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1 Introduction

It is well-known that the sensitivity of the first-generation ground-based laser interferometric GW detectors is
limited by the great amount of different types of noise. The most significant limiting factors at low frequencies
(below ∼ 50 Hz) are gravity-gradient noise (variations in the local gravitational field), seismic noise (external
mechanical vibrations transmitted to the test masses through their suspensions) and thermal noise in the
mirrors suspensions. At middle frequencies (∼ 50 ÷ 500 Hz) thermal noise in the bulks and coatings of the
mirrors dominate. At higher frequencies (above ∼ 500 Hz) photon shot noise limits the sensitivity. Therefore,
all the noises up to ∼ 500 Hz can be referred to the class of displacement noise of the test masses.

In the second-generation detectors, being under preparation, all these noises still remain but their values are
shifted downwards. This leads to the sensitivity limitation by the standard quantum limit (SQL). The cause of
SQL is the fluctuating force of radiation pressure in the laser beam (back-action noise) pushing the interferometer
mirrors in a random manner. Therefore, standard quantum limitation would disappear if one could remove
displacement noise.

Each method of suppression or elimination of displacement noises proposed up-to-date is only suited for control
of only one kind of noise. For instance, active seismic isolation will suppress seismic noise but is helpless against
thermal noise or quantum radiation pressure. From the other hand, quantum-non-demolition (QND) schemes
of measurements are able to cancel back-action noise but are certainly not suited for dealing with seismic or
thermal noise. In this review we will discuss the method of displacement noise cancelation which aims at
simultaneous elimination of the information about all external fluctuating forces but leaves a certain amount
of information about the gravitational waves. This method is usually referred to as displacement-noise-free
interferometry (DFI) in literature. DFI implies that, in principle, test masses no longer need to be isolated
from the environment or cooled to low temperatures. In addition, elimination of radiation pressure implies that
DFIs are no longer limited by the SQL. This can be thought of an alternative method to overcome SQL which,
contrary to QND, is not strongly vulnerable to optical losses. If all displacement noises are eliminated, the
sensitivity of DFIs is ultimately limited by the shot noise.

DFI was first proposed by S. Kawamura and Y. Chen in [1]. In that paper a toy model consisting of three test
masses exchanging the electromagnetic signals with each other was considered. It was shown that it is possible,
in principle, to combine timing signals in such a way that the combination does not include displacement noise
but preserves the GW signal. The reason for this is that the optical GW detector responds differently to the
motions of the test masses and the GW. The “payment” for displacement noise cancelation is the reduction of
GW response at low frequencies.

In the following paper [2] the authors included timing noises in the consideration and analyzed a conversion of
their toy model into interferometric schemes. It was argued that in order to perform complete displacement noise
cancelation, laser noise must also be canceled since it is indistinguishable from displacement noise. The theorem
was proven stating that DFI is impossible in a one-dimensional system, i.e. whenever laser and displacement
noises are canceled, the GW signal vanishes. For two- and three-dimensional schemes DFI is possible with at
least 5 and 6 test masses, respectively.

In the next paper [3] two practical interferometric designs were considered, namely two- and three- dimensional
schemes for ground- and space-based detectors, respectively. For these schemes the authors found that the GW
transfer function is (L/λGW)n (n = 2 for 3D, n = 3 for 2D and L is the linear scale of the GW detector) times
weaker than the transfer function of conventional Michelson interferometer at low frequencies (when L� λGW).
Therefore, major advantages of DFIs are leveled by significant reduction of GW susceptibility in astrophysically
most interesting frequency region.

It was argued [4] that in order to increase the GW response, time-delaying devices should be inserted into
the arms of displacement-noise-free interferometers. However, it was found that the improvement in the GW
response can only be achieved if the noise in the time-delay devices is not canceled. Therefore, the net sensitivity
becomes limited by this noise and DFI loses its advantages.

Another direction in the development of displacement noise reduction was taken in paper [5]. As a first step
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a toy model of a single Fabry-Perot cavity was considered. It was proposed to pump the cavity from both
sides and monitor reflected and transmitted waves. It was found that due to the effect of prompt reflection it
is possible to obtain the GW transfer function proportional to (L/λGW)0 and cancel displacement noise of the
cavity mirrors. However, sensitivity becomes limited by the displacement noise of lasers, photodetectors and all
the auxiliary optics. In addition, a single-cavity scheme does not allow laser noise cancelation.

In order to get rid of residual displacement noise a double-cavity scheme was proposed in [6]. This scheme is
similar to the initial toy model in paper [1]. The difference is that highly reflective mirrors are mounted on each
test mass, thus, forming two symmetrically positioned cavities. It was shown that the proper linear combination
of the responses allows complete displacement noise cancelation but at the cost of reduction of the GW suscep-
tibility. It was found that at low frequencies the GW transfer function is proportional to (L/λGW)(fGWτ

∗
FP),

where τ∗FP is the cavity relaxation time. Therefore, cavity-based DFI has the GW susceptibility increased by the
resonant gain of the cavities, as compared to the schemes proposed in paper [3]. Unfortunately, the assumption
of the mirrors being rigidly mounted on some platforms limits practical value of such a scheme. Besides, laser
noise still remains uncanceled.

In paper [7] a resonant speed meter interferometer was proposed allowing narrow-band displacement-noise-free
GW detection. The mechanism of displacement noise cancelation is the same as in Sagnac-type interferometers.
In paper [8] this model was converted into the wide-band detector by introducing an additional pump. The
low-frequency response to GWs of such a detector is proportional to fGWτ

∗
FP, where τ∗FP is the relaxation time

of ring cavity. Evidently this quantity can be made of the order of unity. Another advantage of the wide-band
speed meter DFI is the automatic cancelation of laser noise. However, the net sensitivity is limited by the
displacement noise of the auxiliary beamsplitters and mirrors which are used to produce the pumping waves of
the ring cavity.

In the most recent paper [9] symmetric feature of the double-cavity scheme has been combined with a laser noise
cancelation technique. Namely, the proposed scheme consists of two symmetrically positioned Michelson/Fabry-
Perot interferometers having a common central platform. The major disadvantage of this model is the need to
place the beamsplitters and the input mirrors of the cavities on the common central platform. The GW transfer
function is proportional to (L/λGW). The only limiting noise source is the noise of local oscillators which
are used for detection of the transmitted waves in the arms. Currently, this is the best one can achieve with
the cavity-based DFI. However, there are certain indications that the severe model assumptions of the rigid
platforms could be overcome in an interferometer with a multi-frequency pump. Several carrier frequencies
increase the number of channels which can be used to eliminate more fluctuative degrees of freedom.

In the following section we will describe the basic physical mechanism underlying displacement-noise cancelation
and briefly consider the DFI schemes proposed in literature with their advantages and disadvantages. It seems
that currently none of the proposed schemes can be directly realized in practice. Further improvements and
modifications are necessary, for instance, studying the possibilities which multi-frequency pump may give.
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2 Displacement-noise-free interferometry

2.1 Basic mechanism

The basic idea of displacement-noise-free interferometry can be best explained from the viewpoint of a local
observer. A natural observer in the GW experiment is the photodetector which produces an experimentally
observable quantity. Let us assume for simplicity that this observer is freely falling in the GW field and is not
subjected to non-GW fluctuative forces. In this case we can describe the interaction between the GW and the
interferometer in the local Lorentz frame of that observer. General math and the case of a non-inertial observer
can be found in Appendix A.

Assume that the interferometer is composed of several test masses. In the local Lorentz frame the interaction of
the GW with a laser interferometer adds up to two effects. The first one is the motion of the test masses in the
GW tidal force-field. In this aspect GWs are indistinguishable from any non-GW forces since both are sensed
by the light wave only at the moments of reflection from the test masses. We will refer to this as the localized
nature of the forces acting on the test masses. If the linear scale L of a GW detector is much smaller than
the gravitational wavelength λGW (the so-called long-wave approximation) then the effect of the GW force-field
is of the order of h(L/λGW)0, where h is the absolute value of the GW amplitude. Relative motion of the
test masses, separated by a distance L, in any force field cannot be sensed by one of them faster than L/c,
thus resulting in the rise of terms of the order of O[h(L/λGW)1] describing time delays which take the light
wave to travel between the masses. Second, the GW directly couples to the light wave effectively changing its
coordinate velocity, thus manifesting itself as an effective refraction index. A light wave traveling in such a
(boundless) medium acquires the information about the GW in its phase gradually, therefore it is a distributed
effect having the O[h(L/λGW)2] order in long-wave approximation. Therefore, from the viewpoint of a local
observer displacement-noise-free interferometry implies cancelation of localized effects (GW and non-GW forces)
leaving a non-vanishing information about the distributed effect (the direct coupling of the GW to light).

Mind that usually laser noise dominates over other sources of noise in practice. Even if the lasers with highly
suppressed technical noise (shot-noise-limited) are provided, any relative motions between the laser and other
optical elements will recreate laser frequency noise via Doppler effect. Therefore, optical and displacement noise
of a laser are indistinguishable from each other. This implies that DFI should also cancel laser noise.

In paper [2] the following theorem was proven. Imagine a system consisting of N test masses exchanging
electromagnetic signals with each other and measuring time of reception by the proper clocks. This gives us
N(N − 1) channels of timing signals. Each test mass is free to move in D spacial dimensions, where D = 1 for
a colinear configuration of the system, D = 2 for coplanar and D = 3 for generic configuration. Each of the N
clocks also has intrinsic timing noise. Totally this gives us ND+N channels of noise. In principle, it is possible
to construct at least N(N − 1)−N(D + 1) = N(N −D − 2) timing combinations that are insusceptible to all
displacement and timing noises if N > D+ 2. However, this does not guarantee that all these combinations will
have non-vanishing response to GWs. It was proven that the 1D configurations have vanishing GW sensitivity
and, thus, DFI is impossible in linear setups. 2D and 3D configurations allow DFI with at least 5 and 6 test
masses, respectively.

2.2 Interferometers for complete displacement noise cancelation

As a demonstration of the proven theorem two examples of interferometers with complete displacement noise
cancelation were considered in paper [3]. The 3D configuration (Octahedron) is depicted in Fig. 1. The
interferometer is composed of four Mach-Zehnder interferometers A1, B1 (solid curves), A2 and B2 (dashed
curves) with corresponding input ports INA1, INB1, INA2 and INB2. Corresponding output ports OUTA1,
OUTB1, OUTA2 and OUTB2 are tuned to zero mean intensity. All arms are assumed to have equal length.
Mirrors A and B are half-transparent, while mirrors C1, C2, D1 and D2 are absolutely reflective.

The response signals of four interferometers are recorded and then electronically post-processed. The difference
in the responses of A1 and B1 cancels the displacement noise of mirrors C1 and D1 due to the equality of the
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Figure 1: 3D and 2D displacement-noise-free interferometers performing displacement-noise-free GW detection.

arms. Similarly, the difference in the responses of A2 and B2 cancels the displacement noise of mirrors C2 and
D2. Finally, the difference of these two combinations eliminates the motions of both beamsplitter A and B, since
the interferometers A1 and A2 sense the motions of the beamsplitters in the same way as the interferometers
B1 and B2.

Note that since the Octahedron is composed of Mach-Zehnder interferometers with detection in dark ports, laser
noise is canceled automatically. The response to GWs corresponding to the described DFI combination turns out
to be proportional to h(L/λGW)2, where L is the length of interferometer arms. This is the direct consequence
of the DFI mechanism: together with displacement noise we also cancel the GW-induced displacements which
are of the O[h(L/λGW)0] order; only distributed effect described by O[h(L/λGW)2] remains.

The Octahedron configuration can be immediately ”squeezed” into the 2D (see Fig. 1). Analysis shows that the
DFI response to GWs of 2D scheme is proportional to h(L/λGW)3.

It is useful to make some numerical estimates. As a reference for comparison we will use a single-pass Michelson
interferometer (w/out arm cavities) and assume its GW susceptibility equal to unity. For L = 10 km and
fGW = 100 Hz the susceptibilities of 3D and 2D DFI are (L/λGW)2 ≈ 10−5 and (L/λGW)3 ≈ 10−7 weaker than
the one of Michelson interferometer with the same arm length.

The following factors which can limit the DFI sensitivity were mentioned in paper [3].

1. If the interferometer arms are not ideally equal but are kept with accuracy of δL then the displacement-
noise reduction factor will be limited by δL/L in amplitude.

2. If the beamsplitters are not ideally 50/50 then the limitation of reduction factor will be of the order of
|RBS − TBS|, where RBS and TBS are beamplitters’ power reflectivity and transmissivity.

3. Optical losses in the mirrors will limit noise reduction factor by ε in amplitude, where ε is the power loss
coefficient.

In paper [4] it was proposed to utilize the artificial time-delay devices (for instance, medium with electromagnet-
ically induced transparency) in order to increase the effective temporal size of the interferometer1. It is expected

1Fabry-Perot cavities and delay lines, for instance, increase the effective spacial size of an interferometer.
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that this would lead to the increase of the low-frequency GW susceptibility. However, it was demonstrated that
this can only be achieved if the noise in time-delay noises is not canceled. Therefore, the net sensitivity in
almost the entire frequency band becomes limited with the time-delay noise.
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3 Partial displacement noise cancelation with cavities

3.1 Limitations imposed by relativity principle

It is useful to look at the mechanism of DFI from another angle. Imagine again a system of test masses exchanging
electromagnetic signals with each other. Any test mass can be chosen to be the local observer making local
measurements inside the system. For instance, in the case of an interferometer the local observer is usually
assigned to one of the interferometer’s photodetectors. We will also assume that there exists a global inertial
reference frame (which we will address as the laboratory frame) with corresponding (laboratory) observer. For
instance, if the interferometer is placed underground then the laboratory frame can be associated with the
cavern. The major difference between the laboratory frame and the proper frame of the local observer is that a
laboratory observer is able to measure the common displacement and the common velocity of the system with
respect to the laboratory, while a local observer is only able to measure the common acceleration of the system
according to the relativity principle.

Let us choose one of the test masses as the reference mass (local observer) and some other j-th test mass as
the probe. We denote the displacement of the probe test mass with respect to the laboratory frame as ξj(t).
Similar displacement of the reference test mass is ξref(t). Clearly, the laboratory observer is able to measure
ξj(t) and ξref(t) separately. However, the local observer is only able to measure the relative displacement of the
j-th test mass with respect to its (observer’s) frame. This displacement equals to δxj(t) = ξj(t)− ξref(t).

Mind that in the LL frame of the local observer a GW acts on the test masses like a tidal force in flat space-time.
In the GW tidal field the probe mass moves with respect to the reference mass as δxj(t) = 1

2x0h(t)+ξj(t)−ξref(t),
where x0 is the distance between the two masses in the state of rest and h(t) is the GW function. The first
term here, 1

2x0h(t), is the GW-induced displacement of the probe mass with respect to the reference one. Both
ξj(t) and ξref(t) represent the displacement noise.

Now, suppose the system of the test masses represents an interferometric GW detector. Displacement-noise-
free interferometry implies elimination of ξref(t) and ξj(t) for all j in the proper linear combination of the
interferometer responses. However, the result of displacement noise elimination cannot be proportional to
x0h(t), since this would mean that we are somehow able to measure the absolute GW-displacement with respect
to the global inertial frame using only the constituent parts of the system. This clearly contradicts the relativity
principle. Below we call the response proportional to x0h the zeroth order response, since it can be rewritten as
x0h(x0/λGW)0. Therefore, if the zeroth order response is obtained in some combination of the responses then
it will also contain several ξref(t) representing the displacements of several reference test masses that have been
used. This means that complete DFI is incompatible with the 0th order response due to the relativity principle.
The same also holds true for the 1st order response, since absolute velocity measurements are also forbidden.
The case of the 2nd and higher order responses x0h(x0/λGW)n requires taking into account distributed redshift
of the optical wave in the GW field.

The practical significance of the 0th and the 1st order incomplete DFIs can be achieved if residual displacement
noises can be suppressed somehow by technical means, making them smaller than the GW signal.

3.2 Single-cavity scheme with the zeroth order response

The idea of displacement-noise-free GW detection is based on the fact that optical interferometers respond
differently to the fluctuative motions of the test masses and the GWs. In principle, this difference can be of
various nature. For instance, in conventional DFIs this difference owns to the distributed nature of the GWs
compared to the localized nature of displacement noise. Therefore, if several response signals asymmetrically
containing GW and displacement noise are provided, then it is possible, in principle, to separate the GW terms
from some displacement noise terms. In certain cases it is possible to separate GW completely. This is only
possible for the DFIs with the 2nd order GW response, for instance the Mach-Zehnder-type interferometer
considered in Sec. 2.2. For the 0th and the 1st order responses only partial cancelation of displacement noise
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is possible, as discussed above. Here we will discuss the scheme based on a single Fabry-Perot cavity with the
0th order response and the asymmetry between the responses based on the effect of prompt reflection.

Consider a system illustrated in Fig. 2a: a FP cavity assembled of two movable, partially transparent, mirrors
a and b is pumped by a laser L1 through mirror a. Detectors D1 and D2 measure the phases of reflected and
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Figure 2: Cancelation of cavity noise.

transmitted waves correspondingly. For simplicity we assume that laser L1 and detector D1 are rigidly mounted
on platform P1 and detector D2 is rigidly mounted on platform P2. It is evident that the wave circulating inside
the cavity measures the relative displacement of mirrors a and b plus GW displacement: ξgw + ξb − ξa. The
transmitted signal at

out can be measured in such a way that it will be directly proportional to this quantity:

at
out = q1(ξgw + ξb − ξa). (1a)

Here q1 describes the resonant gain (amplification of the phase shift) of the cavity. The reflected signal ar
out is

somewhat different: it also includes the component due to the prompt reflection of the pump wave from the
input mirror. For instance, if the cavity is pumped through mirror a then this component is proportional to
ξa − ξP1 . The reflected signal is then

ar
out = p(ξa − ξP1) + q2(ξgw + ξb − ξa). (1b)

Here q2 also describes the resonant gain (multiple reflections inside the cavity), while p is the quantity of the
order of unity since it describes a single reflection from the input mirror. Equations (1a) and (1b) tell us that
we are unable to measure absolute values of ξa and ξb, only relative measurements, e.g. with respect to platform
P1, are allowed.

Now consider the situation illustrated in Fig. 2b: the same cavity is pumped by laser L2 through mirror b
with the wave polarized normally to the wave emitted by laser L1. Detectors D3 and D4 measure the phases of
reflected and transmitted waves, resectively. Again we assume that laser L2 and detector D3 are rigidly mounted
on platform P2 and detector D4 is rigidly mounted on platform P1. The second pair of response signals can be
derived in full similarity. Let us consider the simplest case of equal pumps (equal amplitudes and detunings).
Then due to the symmetry of the system and plane GW wavefront the second pair of responses can be written
as:

btout = q1(ξgw + ξb − ξa), (2a)
brout = p(ξP2 − ξb) + q2(ξgw + ξb − ξa). (2b)

Here the displacements of the mirrors are measured with respect to platform P2.

Now constructing the following linear combination of the responses

s = ar
out +

p− q2

q1
at

out + brout −
q2

q1
btout, (3)

we are able to cancel displacement noise of both mirrors:

s = p(ξgw + ξP2 − ξP1). (4)
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Note that the displacement noise of the platforms cannot be eliminated. This is the direct consequence of the
relativity principle which states that no absolute coordinate or velocity measurements are allowed: one can
measure the coordinates of the mirrors only with respect to the positions of reference test masses, platforms P1

and P2 in our case. Therefore, it is natural that their displacement noises impose the sensitivity limit.

According to formula (4), noise cancelation with the 0th order response is possible due to the effect of prompt
reflection from the input mirror which is described by the p-multiplier. The obtained DFI response is similar
to the response of a simple single-pass GW detector: an observer sends the light wave to the reflective mirror
and receives it back measuring the phase shift. The noise-cancelation algorithm that we perform for a double-
pumped FP cavity in some sense can be interpreted as removal of the cavity “by hands”. Evidently, this results
in the loss of the optical resonant gain: signal s in formula (4) includes neither q1 nor q2.

Two special cases when noise cancelation with the 0th order response is impossible can be immediately “pre-
dicted” from Eqs. (1a — 2b): (i) p = 0, meaning that the prompt reflection does not occur (this takes place
for the resonant pump) and (ii) ξa = ξP1 and simultaneously ξb = ξP2 , meaning that the mirrors are rigidly
attached to the platforms.

In a more rigorous treatment one should consider the setup illustrated in Fig. 3. Here lasers L1 and L2 pump
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Figure 3: A double-pumped FP cavity.

the cavity with the waves Ain and Bin of orthogonal polarizations to exclude their non-linear interaction inside
the cavity. Avac and Bvac are the vacuum fields penetrating the opposite input ports. Homodyne detectors
HD1 and HD2 measure the quadratures of the reflected and transmitted waves Ar

out and At
out correspondingly.

Similarly, homodyne detectors HD3 and HD4 measure the quadratures of Br
out and Bt

out correspondingly. Laser
L1 and both homodyne detectors HD1 and HD2 are assumed to be rigidly mounted on platform P1; laser L2 and
homodyne detectors HD3 and HD4 are assumed to be rigidly mounted on platform P2. Note that we make the
transmitted waves return towards the emission platforms. This is done to simplify the experimental setup, since
the emitting laser can also play the role of the local oscillator for detectors of both reflected and transmitted
waves.

Assume for simplicity that both lasers generate optical waves with equal power and their frequencies have
equal detunings from resonance (in the following we neglect the effect of the optical spring). Let us also focus
on the most interesting case of the narrow-band (γτ � 1, where γ is the half-bandwidth and τ = L/c) and
long-wavelength approximations (L� λGW).
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After the signals (1a – 2b) are recorded they can be combined in a desirable way. In paper [5] one can find
strict formulas for the reflected and transmitted signals. Formula (4) in the frequency domain taking laser and
vacuum noises into account can be written as:

s(ω0 + Ω) = ain(ω0 + Ω) + bin(ω0 + Ω) + avac(ω0 + Ω) + bvac(ω0 + Ω)

− iδ

γ − iδ
A 2ik0

[
1
2
Lh(Ω) + ξP2(Ω)− ξP1(Ω)

]
, (5)

Here ain(ω0 + Ω) and bin(ω0 + Ω) are optical laser noises, avac(ω0 + Ω) and bvac(ω0 + Ω) are vacuum noises,
δ is the detuning of pump carrier frequency ω0 from resonance, A is the amplitude of lasers, k0 = ω0/c is
the wavenumber, h(Ω) is the GW function, ξP1(Ω) and ξP2(Ω) are the displacement noises of two platforms.
Comparing Eq. (4) with Eq. (5) we come to the conclusion that p is proportional to δ/(γ − iδ) which is a
quantity of the order of unity if δ ≈ γ. Response (5) is written in the terms of sidebands, but in practice,
of course, only quadratures can be combined. The result of such a combination will differ from (5) only in
numerical factors of the order of unity.

The considered scheme suffers from at least two disadvantages:

1. Uncanceled laser noise will dominate other sources of noise in practice.

2. Displacement noise cancelation is not complete. In order to make the platform noises negligible one should
somehow isolate the platforms from all sources of noise. This is hardly possible in practice. In addition, we
assumed that all the optical elements (lasers, detectors, auxiliary optics) are mounted on the platforms.
Otherwise, there will appear more fluctuative degrees of freedom which will even increase the residual
level of displacement noise.

Laser noise can be canceled, in principle, in the balanced scheme. This usually implies detection in the dark port
so that the waves interfere physically. In Fig. 4 two such balanced schemes with double-pumped cavities are
demonstrated. In Fig. 4a the basic topology resembles the one of the Mach-Zehnder interferometer. Cavities are

 

a b 

D1 

D2 

c 

d 

L1 

L2 

BS2 

BS1 

M1 

M2 

a 

 

a b 

D1 D2 

c 

d 

L1 

L2 BS2 

BS1 

M2 M1 

M3 

M4 

b 

Figure 4: Balanced schemes with double-pumped cavities. a. Scheme with two “corner stations”. b. Scheme
with one “corner station”.

inserted into two arms. Pump waves are produced by distantly located lasers (two “corner stations”). Detector
D1 registers the reflected wave corresponding to the pump of laser L1 and the transmitted wave corresponding
to the pump of laser L2. Similarly, detector D2 registers the reflected wave corresponding to the pump of laser
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L2 and the transmitted wave corresponding to the pump of laser L1. In Fig. 4b the topology of the scheme is
close to the conventional Michelson/Fabry-Perot topology. Both pumps are generated by closely located lasers
(one “corner station”) but one of the pumps is transmitted along the arms and redirected into the cavities from
the other side by the additional mirrors. Detectors D1 and D2 perform similar to the previous case.

Although laser noise is eliminated in the proposed balanced schemes, they all suffer from the same disadvantage:
their sensitivity is limited by the residual displacement noise of the beamsplitters and additional mirrors which
redirect laser beams.

3.3 Resonant speed meter

3.3.1 Displacement noise cancelation at narrow frequency bands

In paper [7] it was proposed to use the concept of the speed meter as a narrow-band displacement-noise-
free interferometer. Consider the scheme illustrated in Fig. 5. Laser beams of frequency ω0 divided at the

Figure 5: Resonant speed meter.

50/50 beamsplitter Mb are reflected by completely reflective mirrors Ma and Mc, and enter the (ring-shaped)
synchronous recycling cavity (with arm length L), which is formed by an input mirror M1 and three high-
reflective mirrors M2, M3 and M4. In the cavity, each beam circulates clockwise (CW) and counterclockwise
(CCW), then leaves the cavity and is finally recombined at the beamsplitter Mb.

Consider first the recycling cavity. Mirrors M1 and M3 commit fluctuative motions η1(t) and η3(t) along the
y-axis. Similarly, mirrors M2 and M4 commit fluctuative motions ξ2(t) and ξ4(t) along the x-axis. If one assumes
that the resonance condition 4ω0τ = 2πn, n = 1, 2, . . . is fulfilled then the transfer function of the cavity for the
counterclockwise can be described by the following formula:

T CCW(Ω) = −i
√

2ω0
RF −REe4iΩτ

1−RFREe4iΩτ
η1(Ω) + i

T 2
FRE

(1−RFRE)(1−RFREe4iΩτ )

[
δΨCCW

GW (Ω) + δΨCCW
TM (Ω)

]
(6)
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Here RF and TF are the amplitude reflectivity and transmissivity of mirror M1 and RE is the composite
reflectivity of mirrors M2, M3 and M4; δΨCCW

GW (Ω) is the GW-induced phase shift and δΨCCW
TM (Ω) is the phase

shift due to the displacement noise of the cavity mirrors:

δΨCCW
TM (t) =

√
2
ω0

c

[
−ξ2(t− τ) + η3(t− 2τ) + ξ4(t− 3τ)− η1(t− 4τ)

]
,

where τ = L/c. A similar formula for the clockwise wave transfer function T CW(Ω) can be written straightfor-
wardly.

The differential signal between the CCW and CW waves is registered at the photodetector:

T (Ω) = T CCW(Ω)− T CW(Ω) = −i T 2
FRE

(1−RFRE)(1−RFREe4iΩτ )

[
δΨGW(Ω) + δΨTM(Ω)

]
. (7)

Let us look closer at the differential phase shifts due to GW and displacement noises. The latter one takes the
following form:

δΨTM(Ω) = δΨCCW
TM (Ω)− δΨCW

TM (Ω) = 2
√

2i
ω0

c

[
ξ2(Ω) + ξ4(Ω)

]
sin Ωτe2iΩτ . (8)

Note that displacement noises η1(Ω) and η3(Ω) are automatically canceled out at all frequencies, because the
CW and CCW beams simultaneously experience the displacements of mirrors M1 and M3. In addition, at the
frequencies that satisfy Ωτ = πn, n = 1, 2, . . . all displacement noises vanish. This is because the CW and
CCW beams in the cavity experience the displacement of M2 and M4 with the same phase, though the time of
reflection is shifted by multiples of the period. Therefore, displacement noises in the cavity are not amplified
around the cancelation frequencies, though the cavity is on resonance.

The GW induced phase is:

δΨGW(Ω) = δΨCCW
GW (Ω)− δΨCW

GW(Ω) = 8i
ω0

Ω
h(Ω) cos Ωτ sin2 Ωτ

2
e2iΩτ .

Note that the GW resonates at Ω = 2π(2m − 1)/2τ , m = 1, 2, . . .. Therefore, at n = m = 1 the displacement
noise of the cavity is canceled (see Eq. (8)) while the GW signal is resonantly amplified.

The major limiting factor of the proposed scheme comes from the displacement noises of mirrors Ma, Mb and
Mc which cannot be canceled. Their contribution to the transfer function is:

Tadd(Ω) = −
√

2
ω0

c

[
ξa(Ω)− ξb(Ω) + ξc(Ω)

]
. (9)

Another limitation comes from the vacuum shot noise. In Fig. 6 the plots of SNR are presented.

3.3.2 Displacement noise cancelation at the wide frequency band

A narrow-band DFI speed meter can be immediately converted into a wide-band one as suggested in paper [8].
For this purpose the second pump should be introduced into the system as drawn in Fig. 7. Two lasers (with
additional mirrors) are mounted on two platforms P and Q. Mirror M3 is absolutely reflective for the beams
of laser 1, while it is partially transparent for the beams of laser 2. Similarly for mirror M1. It is evident that
the beams of both laser encounter mirrors M2 and M4 simultaneously. Therefore, subtracting the signals of
two photodetectors we obtain the signal which is completely free from displacement noise of the cavity. In the
low-frequency region the DFI signal takes the following form [8, 10]:

s = vacuum noise + platform noise + 2
√

2
γ

γ − iδ
A 1

(γ − iδ − iΩ)τ
ik0ΩτLh. (10)

Here A is the amplitude of both lasers, γ is the half-bandwidth of the ring cavity and δ is detuning from
resonance. The term “platform noise” is the displacement noise of the relative motion of the platforms P and Q
along the x-axis. Residual platform noise is inevitable, because response (10) is of the 1st order (proportional to
Ωτ). Both the GW signal and platform noise are comparable in magnitude and come with identical coefficients.
The resonant factor ∼ γτ is compensated by a small factor ∼ Ωτ . Again these are the consequences of the
limitations imposed by the relativity principle (see Sec. 3.1).
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Figure 6: SNR of the resonant speed meter [7]. Left: the contribution of different noise sources to total SNR
is given by the solid black curve (RE = 1, RF = 0.99). Right: The dependence of the SNR on the resonance
factor; solid, dashed and doted curves are evaluated for RF = 0.99, 0.999, 0.9999 respectively (RE = 1).
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Figure 7: Wide-band displacement-noise-free resonant speed meter.
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4 Complete displacement noise cancelation with cavities

4.1 Double-cavity scheme with the second order response

First let us consider a simple toy model [6] illustrated in Fig. 8. The system is composed of three test masses a,

a b c 

GW 

Figure 8: Three test masses in the GW field.

b and c positioned along a line. Each test mass is supplied with a laser and detector so that they can exchange
electromagnetic signals and record the results. Assume all the lasers to be ideal, meaning that there is no optical
laser noise. Test masses are separated by a distance L in the state of rest and commit fluctuative motions ξa(t),
ξb(t) and ξc(t) near the positions of equilibrium.

The phase shifts of the optical signal along the paths a→ b→ a and b→ a→ b are:

δΨaba(t) = δΨGW(t) + k0

[
−ξa(t) + 2ξb(t− τ)− ξa(t− 2τ)

]
, (11)

δΨbab(t) = δΨGW(t) + k0

[
ξb(t)− 2ξa(t− τ) + ξb(t− 2τ)

]
. (12)

Here

δΨGW(t) =
ω0

2

∫ t

t−2τ

h(t1)dt1, (13)

is the phase shift of the optical wave produced by the GW. From combination of phase shifts (11) and (12) one
can exclude the displacement noise of test mass a in the following combination:

s1(t) = 2δΨaba(t)− δΨbab(t+ τ)− δΨbab(t− τ) =

= 2δΨGW(t)− δΨGW(t+ τ)− δΨGW(t− τ) + k0

[
2ξb(t− τ)− ξb(t+ τ)− ξb(t− 3τ)

]
. (14)

Consider now similarly platforms b and c:

δΨcbc(t) = δΨGW(t) + k0

[
ξc(t)− 2ξb(t− τ) + ξc(t− 2τ)

]
, (15)

δΨbcb(t) = δΨGW(t) + k0

[
−ξb(t) + 2ξc(t− τ)− ξb(t− 2τ)

]
. (16)

The following combination of phase shifts (15) and (16) cancels displacement noise of test mass c:

s2(t) = 2δΨcbc(t)− δΨbcb(t+ τ)− δΨbcb(t− τ) =

= 2δΨGW(t)− δΨGW(t+ τ)− δΨGW(t− τ) + k0

[
−2ξb(t− τ) + ξb(t+ τ) + ξb(t− 3τ)

]
. (17)

Now we see that the GW term enters signals (14) and (17) with the same sign while the displacement noise of
platform b enters with different sign. Therefore, the sum of the two signals cancels the latter:

s(t) =
s1(t) + s2(t)

2
= 2δΨGW(t)− δΨGW(t+ τ)− δΨGW(t− τ). (18)



DFI review

ET-024-09
issue : 1
date : October 12, 2009
page : 15 of 23

Therefore, signal s(t) represents the displacement-noise-free response of the 3-platform scheme. It should be
stressed that this result does not contradict the theorem proved by Kawamura and Chen (see Sec. 2.1). In our
model we assumed that timing (or, equivalently, laser) noise is absent, therefore, displacement noise cancelation
in our model cannot be considered complete in the strict sense.

In the frequency domain signal (18) is:

s(Ω) = −ω0τ
(
1− eiΩτ

)2 sin Ωτ
Ωτ

h(Ω). (19)

It is interesting to consider its long-wavelength approximation when Ωτ ∼ L/λGW � 1:

s(Ω) ≈ ω0τ(Ωτ)2h(Ω), (20)

that corresponds to
s(t) ≈ −ω0τ ḧ(t) τ2, (21)

in time domain.

It is reasonable to expect that the FP cavities placed between the platforms will amplify the ∼ (Ωτ)2 response.
However, placing cavity mirrors independently of the platforms will introduce additional 4 fluctuative degrees of
freedom associated with displacement noise of the cavities. To avoid this problem it was suggested in paper [6]
to mount the mirrors rigidly on the platforms. Namely, in Fig. 9 such a double-cavity scheme is demonstrated.
Emission and detection in each of the cavity is performed similar to the scheme in Fig. 3 considered in Sec. 3.2.
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HD8 

Pc 

Figure 9: Double-cavity setup.

Elimination of the displacement noise of the three platforms Pa, Pb and Pc is performed in a similar way to
Eqs. (14), (17) and (18). The experimentalist is free to choose whether to combine reflected signals (measured
by detectors HD1, HD3, HD5 and HD7) or transmitted signals (measured by HD2, HD4, HD6 and HD8). The
DFI signal takes the following form at low frequencies:

s = laser noise + vacuum noise +
γ

γ − iδ
A 1

(γ − iδ − iΩ)τ
ik0(Ωτ)2 Lh. (22)

Here A is the amplitude of lasers, γ is the half-bandwidth of each cavity, δ is the detuning from resonance.
Note that the (Ωτ)2-multiplier is divided by a small factor of the order of γτ . Therefore, this is the 2nd order
response with the resonant amplification. However, the susceptibility to GWs of the double-cavity DFI is still
(Ωτ)2 times worse than the one of the conventional Michelson/FP topology (such as LIGO or VIRGO).

The proposed model suffers from two major disadvantages:

1. It requires mounting of the mirrors as well as lasers and detectors on the platforms that is highly imprac-
tical, especially for the ground-based GW detectors.

2. The scheme is unbalanced, therefore laser noise cannot be canceled.
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4.2 Double Michelson/Fabry-Perot interferometer with the second order response

The major disadvantages of the single-cavity scheme with the 0th order response are incomplete displacement
noise cancelation and domination of laser noise. The scheme with two symmetrically positioned cavities allows
complete displacement noise cancelation at the cost of a decrease of the GW susceptibility. Therefore, it is
reasonable to convert this scheme into the balanced one to cancel laser noise as proposed in paper [9].

Consider the scheme illustrated in Fig. 10. Laser L pumps the interferometer with the input wave AL. Upon
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Figure 10: A Michelson/Fabry-Perot optical setup.

arrival at the 50/50-beamsplitter BS the input wave is split into two waves Ain and Bin which pump the
horizontal and vertical arms, respectively. The Fabry-Perot cavity in the horizontal arm is assembled of two
partially transparent mirrors a1 and b1. The similar cavity in the vertical arm is assembled of mirrors a2 and b2.
Both the cavities produce reflected and transmitted waves. Reflected waves Ar

out and Br
out return towards the

beamsplitter and interfere. Assume the interferometer is tuned to a dark port. This means that the reflected
waves interfere destructively and the mean optical power returns towards the laser. However, the weak time-
dependent (signal) part Cr

out penetrates into the dark port and falls on detector DC . The dark port of DC

also produces the vacuum pump Cvac. Transmitted waves At
out and Bt

out are measured with the corresponding
detectors: in the horizontal arm it is DA and in the vertical arm it is DB . Both detector ports also produce the
vacuum pumps Avac and Bvac.

The wave registered by DC does not contain laser noise, only displacement noises along with the GW signal.
Detector DC may operate as the balanced homodyne detector or in the DC readout regime. In the first case
local oscillation can be produced by laser L. In the second case interferometer arms should be detuned slightly
so that some mean power penetrates to the dark port; since the signal is amplitude-modulated by the GW (and
noises), amplitude detection is performed then by DC and no local oscillator is required.

However, transmitted waves should be registered by the means of homodyne detection. Additional local oscilla-
tors (auxiliary lasers mounted near detectors) will be required. These lasers should be additionally synchronized
with laser L in such a way that they all measure identical quadratures.

Assume that the quadratures (or amplitudes) of both transmitted waves have been measured. Once they are
measured they can be stored in a computer memory and processed later. For instance, an experimentalist may
produce any desired linear combinations between them. A simple subtraction of at

out from btout cancels the
term containing laser noise, since the latter is common for both arms. This can be thought of as a possible
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method of laser noise cancelation from the transmitted waves. In the case of the reflected waves the elimination
of laser noise takes place at the level of the interference of the field amplitudes and further recording of the
laser-noiseless field. In the case of the transmitted waves we first record the amplitudes containing laser noise
and then linearly combine them to produce the laser-noise-free quantity. However, the change in the sequence
of procedures (to combine first and then record or first record and then combine) does not introduce any
meaningful physical difference. However, in practice laser noise suppression by means of electronic subtraction
will be mainly determined by the equality of physical parameters of photodetectors: the more identical they
are, the more suppression of noise can be achieved. Computational post-processing of the recorded signals does
not introduce any significant noise itself.

At this stage we have a pair of laser-noise-free signals: the one measured by the DC and differential signal of
DA and DB . These signals can be combined in turn to cancel one fluctuative degree of freedom. In our scheme
there are four displacement noise channels: motion of the beamsplitter, differential motion of the input mirrors,
differential motion of the end-mirrors and differential motion of the end-photodetectors. Therefore, we should
somehow suppress two more degrees of freedom by hands (the last one will be eliminated by the additional
interferometer, see below). We introduce the following model assumptions (see Fig. 10):

1. Both the input mirrors are rigidly attached to the beamsplitter. The composite mass will be called
platform PBS.

2. Detectors DA and DB are rigidly attached to the end-mirrors b1 and b2, respectively. Corresponding
platforms will be called P1 and P2.

Let us choose to cancel the differential motion of the end-platforms P1 and P2. This is similar to the cancelation
of the displacement noise of platform c in the 2-cavity scheme from the signals in the b − c cavity. By doing
so we are left only with the fluctuative motion of the cental platform PBS. Let us call this partially noise-free
combination s1(t). The analogy with the 2-cavity scheme suggests that the noise of the central platform can be
canceled by placing the second Michelson/Fabry-Perot symmetrically.

In Fig. 11 we illustrated the scheme of double interferometer having a common cental platform. This platform

 

Figure 11: A double Michelson/Fabry-Perot interferometer having common central platform.

contains both beamsplitters and all the input mirrors of both interferometers mounted rigidly. The requirement
of a rigid platform is crucial for our model. A single laser pumps both interferometers. Since its noise is common
for both arms of each interferometer, it can be mounted independently from the central platform. In order not
to complicate the figure we do not show all the additional beamsplitters and mirrors which redirect the laser
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beam towards the second interferometer; these auxiliary optical elements, however, do not introduce any extra
displacement noise into the signals of the second interferometer because this noise is common for both arms of
the latter. Therefore, noises of these auxiliary objects are canceled either physically by the interference in the
dark port, or electronically when subtracting one transmitted signal from another. Due to this reason all the
objects which are encountered by the optical wave before it falls on the main beamsplitter of the Michelson
interferometer do not introduce their displacement noise into the laser-noise-free signals, and thus can be, in
principle, detached from the platform (similar to the laser itself).

We assume that the procedure of noise-cancelation of the end-platforms has also been performed for the second
interferometer resulting in partially noise-free signal s2(t). Finally adding the responses s1(t) and s2(t) we
obtain the displacement-noise-free signal s(t) which takes the following form in the low-frequency region (long-
wavelength approximation):

s = vacuum noise− γ

γ − iδ
A ik0Ωτ

1
2
Lh. (23)

Here A is the amplitude of the laser, γ is the cavity half-bandwidth, δ is the detuning from resonance. One may
conclude from formula (23) that the GW susceptibility of the proposed scheme is (Ωτ) times worse than the
one of Michelson interferometer. Although all displacement noises have been canceled, the first order response
indicates that uncanceled laser noise remains — the noise of local oscillators which are used for detection of the
transmitted signals. An attempt to make transmitted waves interfere and detect the dark-port signal leads to
the rise of displacement noise of the mirrors that redirect the waves.

Note also that the GW signal in formula (23) comes without the resonant gain. Therefore, the loss of the
sensitivity of the proposed DFI topology in comparison to the conventional Michelson/FP topology at fGW ∼ 100
Hz can be estimated as ∼ 10−4 by the order of magnitude if the cavity half-bandwidth γ/2π ∼ 100 Hz and L = 10
km. Due to this reason one may conclude that the proposed topology has no advantages over Michelson/FP
topology for the purpose of the ground-based GW detection.
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5 Conclusion

We have reviewed most of the displacement noise reduction techniques present in literature. Clearly, at the
moment none of the proposed schemes is valid for immediate implementation in practice. The general pecu-
liarity of displacement-noise free interferometers is the decrease of the GW susceptibility in the low frequency
region (L/λGW � 1). This drawback comes from the mechanism of noise cancelation. Fortunately, when
all displacement and laser noises are canceled (or strongly suppressed) the only limiting factor becomes vac-
uum shot noise which can be depressed by increase of laser amplitude of squeezing. In addition, several DFI
schemes that implement the cavities allow resonant amplification of the GW response. However, the schemes
with resonantly amplified GW response suffer from other disadvantages such as uncanceled laser noise (which is
dominant in practice) or requirement of rigid platforms (that are very impractical). Although these limitations
could be overcome, in principle, the significant loss of the GW susceptibility in low-frequency region does not
allow the displacement noise reduction schemes, considered in this review, to have advantages over conventional
(non-DFI) topologies for the means of the ground-based GW detection.
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A Mechanism of displacement noise cancelation

A.1 Inertial reference test mass

Let us choose one of the interferometer’s photodetectors (D) as the reference test mass (TM). First we consider
the case of the inertial photodetector, i.e. the one which strictly follows the geodesic of the GW. It the
photodetector’s local Lorentz frame interaction of an interferometer with the GW adds up to two effects (see
[11, 12, 13]). Correspondingly, the response of an interferometer (phase shift) can be represented as a sum
of two terms. The first effect, which corresponds to a phase shift δΨGW+TM(t), is the motion of the test
masses in the tidal force-field of the GW. If the j-th test mass is located at a distance Lj = cτj away from
the photodetector then its GW-induced displacement 1

2Ljh(t) enters in δΨGW+TM(t) as ajk0
1
2Ljh(t − njτj).

This is because the information about the motions of the test masses, separated by a distance Lj , cannot be
transferred between them faster than Lj/c in any force-field. Coefficients aj take into account the peculiarities
of the interferometer’s geometry, and natural numbers nj take into account the time delays corresponding to
this geometry. If an interferometer consists of N test masses then:

δΨGW+TM(t) =
N∑
j=1

ajk0
1
2
Ljh(t− njτj). (24)

Note that the summand corresponding to the photodetector itself does not enter this formula, since by definition
we work in its local Lorentz frame where LD = 0.

All the forces acting on the test masses, including the GW force, are indistinguishable by interferometry, since
they change the phases of the optical waves only at the moments of reflection. From the point of view of
interferometry this property of the forces describe their localized (in space and time) nature. Let us denote
the fluctuative displacement of the j-th test mass under the influence of all non-GW forces as ξj(t). The
corresponding phase shift will be denoted as δΨTM fluct(t). Due to the indistinguishability between the GW and
non-GW forces the latter can be written in the following form:

δΨTM fluct(t) =
N∑
j=1

ajk0ξj(t− njτj). (25)

Here the summand corresponding to the fluctuative motion of the photodetector cancels out, since it is an inertial
test mass by definition and therefore, ξD(t) = 0. Total contribution of the localized effects (displacement of the
test masses) into the interferometer’s response can be written in the following form:

δΨTM(t) = δΨGW+TM(t) + δΨTM fluct(t) =
N∑
j=1

ajk0

[
1
2
Ljh(t− njτj) + ξj(t− njτj)

]
, (26)

or in the frequncy domain:

δΨTM(Ω) = δΨGW+TM(Ω) + δΨTM fluct(Ω) =
N∑
j=1

ajk0

[
1
2
Ljh(Ω) + ξj(Ω)

]
einjΩτj . (27)

If the linear scale of the GW detector L = cτ2 is far less than the gravitational wavelengths λGW (long-wavelength
approximation), i.e. Lj ∼ L � λGW for all j, then it is convenient to expand the exponents corresponding to

2Usually arms lengths Lj of the GW antennas are chosen to be the multiples of fixed length L, i.e. Lj = αjL, where αj —
numbers. Therefore, L can be considered as a typical length-scale, and typical trip time τ = L/c.
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time delays into Taylor series in the vicinity of zero:

δΨTM(Ω) =
N∑
j=1

ajk0

[
1
2
Ljh(Ω) + ξj(Ω)

] [
1 + injΩτj +

(injΩτj)2

2
+ . . .

]
=

=
N∑
j=1

ajk0

[
1
2
Ljh(Ω) + ξj(Ω)

] [
b0j(Ωτj)0 + b1j(Ωτj)1 + b2j(Ωτj)2 + . . .

]
. (28)

Here the numerical multipliers bij take into account the coefficients of the Taylor expansion with b0j ≡ 1. It is
clear that in the long-wavelength approximation the GW response has the order of h(Ωτ)0 ∼ h(L/λGW)0 (these
are the terms of the 0th order in the Taylor expansion), where h is the typical value of the GW amplitude. In
addition, due to the time delays L/c there appear the terms of the order of O[h(L/λGW)1] in the response.

It is convenient to represent the time delays τj in the form αjτ , where αj are the numerical coefficients. Then
δΨTM(Ω) can be rewritten as:

δΨTM(Ω) =
∞∑
k=0

Gk(Ω)(Ωτ)k +
∞∑
k=0

Nk(Ω)(Ωτ)k, (29)

where

Gk(Ω) =
N∑
j=1

ajk0
1
2
Ljh(Ω)bkj(αj)k, Nk(Ω) =

N∑
j=1

ajξj(Ω)bkj(αj)k. (30)

Functions Gk(Ω) and Nk(Ω) describe the action of the GW force and all the non-GW forces correspondingly.
From Eq. (29) it explicitly follows that the GW and non-GW forces are indistinguishable in all orders of
Ωτ ∼ L/λGW.

The second effect of the GW in the local Lorentz frame is their direct interaction with the optical waves. This
can be qualitatively interpreted as the propagation of the optical waves in the medium with effective refraction
index [11, 12]. While traveling in such a (boundless) medium the optical wave acquires the corresponding phase
shift δΨGW+EMW(t) gradually, meaning that this is a distributed (in space and time) effect. In the long-wave
approximation the direct interaction of the GWs with light is an effect of the O[h(L/λgw)2] order [12]. In other
words, introducing some numerical coefficients ck, the corresponding phase shift can be written in the following
form:

δΨGW+EMW(Ω) =
∞∑
k=2

k0Lh(Ω)ck(Ωτ)k ≡
∞∑
k=2

G̃k(Ω)(Ωτ)k. (31)

The response δΨ(Ω) of an interferometer, as discussed above, is the sum of the response to displacements of the
test masses δΨTM(Ω) and the response to distributed effect of GW δΨGW+EMW(Ω):

δΨ(Ω) = δΨTM(Ω) + δΨGW+EMW(Ω) =

=
∞∑
k=0

Gk(Ω)(Ωτ)k +
∞∑
k=0

Nk(Ω)(Ωτ)k +
∞∑
k=2

G̃k(Ω)(Ωτ)k =

= (G0 +N0)(Ωτ)0 + (G1 +N1)(Ωτ)1 + (G2 + G̃2 +N2)(Ωτ)2 + (G3 + G̃3 +N3)(Ωτ)3 + . . . (32)

it follows that beginning from the 2nd order of L/λGW it is possible, in principle, to distinguish the influence of
the GW on an interferometer from the fluctuative forces. Note, however, that the first non-vanishing term in
the noise-free linear combination of the interferometer’s responses can be of the higher (than the second) order
of smallness due to specific topology of the GW DFI detector.

Therefore, from the viewpoint of the local Lorentz frame displacement-noise-free interferometry implies cance-
lation of the localized effects (GW and non-GW forces), leaving only the distributed effect (direct interaction
of the GW with light).
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A.2 Non-inertial reference test mass

Now let us consider the case of the photodetector to be subjected to the external fluctuative forces. This means
that the proper reference frame is non-inertial and we have to take this fact into account.

In the photodetector’s proper reference frame the fluctuative motion of the j-th test mass equals to δxj(t) =
ξj(t)− ξD(t) [13]. The corresponding phase shift δΨTM fluct(t) takes the form:

δΨTM fluct(t) =
N∑
j=1

ajk0δxj(t− njτj). (33)

The phase shift δΨGW+TM(t) remains unchanged. Therefore, the phase shift due to the displacements of the
test masses takes the following form:

δΨTM(Ω) =
∞∑
k=0

Gk(Ω)(Ωτ)k +
∞∑
k=0

Nk(Ω)(Ωτ)k, (34)

Gk(Ω) =
N∑
j=1

ajk0
1
2
Ljh(Ω)bkj(αj)k, Nk(Ω) =

N∑
j=1

ajδxj(Ω)bkj(αj)k, (35)

with all the numerical coefficients remaining unchanged.

The major difference from the previous case of an inertial reference is that the optical wave directly interacts
with the effective gravitational field of the non-inertial frame. According to Ref. [13] this interaction has a
distributed nature. The corresponding phase shift has the order of O[k0(Ωτ)2ξD], therefore it can be written in
the following form:

δΨacc+EMW(Ω) =
∞∑
k=2

k0ξD(Ω)dk(Ωτ)k ≡
∞∑
k=2

Ñk(Ω)(Ωτ)k, (36)

where dk are some numerical coefficients. The total response of an interferometer takes the form::

δΨ(Ω) =
∞∑
k=0

Gk(Ω)(Ωτ)k +
∞∑
k=0

Nk(Ω)(Ωτ)k +
∞∑
k=2

G̃k(Ω)(Ωτ)k +
∞∑
k=2

Ñk(Ω)(Ωτ)k =

= (G0 +N0)(Ωτ)0 + (G1 +N1)(Ωτ)1 + (G2 + G̃2 +N2 + Ñ2)(Ωτ)2 + . . . (37)

It follows that the new fluctuative term appears beginning from the 2nd order of Ωτ having a distributed nature.
However, the structure of formulas for δΨGW+EMW(Ω) and δΨacc+EMW(Ω) (see [13]) tells thatthe corresponding
functions G̃k(Ω) and Ñk(Ω) cannot coincide for all k. Therefore, beginning from some k ≥ 2 it is possible, in
principle, to distinguish the GW from the fluctuative motions of the test masses.

Summing up, in the case of a non-inertial reference test mass one cannot consider the action of external force
on an interferometer as a localized effect. However, in Ref. [13] it was shown that in all ultimate results the
sum δΨTM fluct(Ω) + δΨacc+EMW(Ω) either coincides with

δΨTM fluct(Ω) + δΨacc+EMW(Ω) =
∞∑
k=0

Nk(Ω)(Ωτ)k +
∞∑
k=2

Ñk(Ω)(Ωτ)k =
N∑
j=1

ajk0ξje
injΩτj , (38)

for the round-trip schemes, or differs in the Doppler correction (due to the motion of the reference test mass)
for the forward-trip schemes. Therefore, the displacement noise of the reference test mass enters the response
of an interferometer as the localized effect, although it is calculated is a distributed one. Due to this reason we
consider the GW as the only distributed effect.
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