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Plan of the lectures

Lecture 1: Sources of Gravitational Waves 
Motivation

Why study gravitational waves?
Physics of gravitational waves

Polarizations, propagation and wave generation,
Estimating the amplitude of gravitational waves from 
typical sources

Supernovae, binary black holes, stochastic backgrounds, 
spinning neutron stars,

Modeling black hole binaries
Inspiral, merger and ring-down phases, post-Newtonian theory, 
effective one body formalism, numerical relativity simulations
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Plan of the lectures
Lecture 2: GW Detectors

Interferometric gravitational-wave detectors
Principle behind their operation
Response of an interferometer to incident signal
Antenna pattern, sky coverage, triangulation, source 
reconstruction

Current and planned detectors and their sensitivities
Ground-based detectors

LIGO, Virgo, GEO600, LCGT, IndIGO, LIGO-Australia, Einstein Telescope
Results from current detectors will be discussed in lecture 5
Space-based detectors

LISA, DECIGO, BBO, PTA 

Sources and science from these detectors will be covered in 
lecture 6
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Plan of the lectures
Lectures 3: Data Analysis

Geometric formulation of signal analysis
Data as vectors, signal manifold, metric

Matched filtering
Detecting a signal of known shape but unknown parameters, examples 
from detection of CW and inspirals

Covariance matrix
Parameter estimation, principal components; examples

Choice of templates
The problem of template placement

Coincident and coherent detection

Lecture 4: Current status of GW observations
Sensitivity of the current searches to various sources
Upper limits on GW emission from Crab, GRBs, Early-Universe
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Plan of the lectures
Lecture 5: Fundamental Physics and Cosmology with 
GW observations

Testing the properties of gravitational waves
Speed of gravitational waves and mass of the graviton, polarization 
states, alternative theories of gravity and testing string theory

Strong field tests of gravity
The no-hair theorem, binary black hole merger and ring-down 
phases, naked singularities and cosmic censorship hypothesis

Understanding supra-nuclear physics
Observation of the neutron stars and their equation-of-state

Standard sirens of gravity and cosmography
Dark matter and dark energy densities, dark energy equation of 
state
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Plan of the lectures

Lecture 6: Astrophysics and Cosmology with GW
Unveiling the origin of high energy transients

Gamma-ray bursts, magnetars, low-mass X-ray binaries
Understanding low-mass X-ray binaries

Stalled neutron stars, relativistic instabilities, r-modes, etc.
Seed black holes at galactic nuclei

How and when black hole seeds formed at galactic nuclei, 
what were their masses, spins, and how did they grow in 
size?

Stochastic backgrounds 
Generation of a background in the early Universe; GUT 
phase transitions, cosmic strings, etc.
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Why Study Gravitational Waves?

In the early part of the 20th century Einstein’s theory of 
gravity made three predictions

The Universe was born out of nothing in a big bang everywhere
Black holes are the ultimate fate of massive stars
Gravitational waves are an inevitable consequence of any theory 
of gravity that is consistent with special relativity

Today we have indirect evidence for all but have directly 
observed none
The key to observing the first two is the new tool that is 
provided by the last

In these lectures we will discuss what gravitational waves are and 
how they can be used to explore the dark and dense Universe
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On Largest Scales Gravity Shapes the 
World

On the largest scales matter is electrically neutral
Stars and galaxies feel only the gravitational field of other stars 
and galaxies

So far, gravity has played a passive role in our exploration 
the Universe

But that is about to change
Over the next decade we expect to open a new window 
on the Universe

The gravitational window
These lectures will take you on a tour of what this 
window is all about and what it might tell us about the 
Universe
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March 14, 2006GW: Status and Future 10
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March 14, 2006GW: Status and Future 10

Quantum Fluctuations in the Early Universe
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March 14, 2006GW: Status and Future 10

Merging super-massive 
black holes (SMBH) at 
galactic cores

Monday, 4 October 2010



March 14, 2006GW: Status and Future 10

Phase 
transitions 
in the 
Early 
Universe
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March 14, 2006GW: Status and Future 10

Capture 
of black 
holes and 
compact 
stars by 
SMBH
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March 14, 2006GW: Status and Future 10

Merging 
binary 
neutron 
stars and 
black 
holes in 
distant 
galaxies
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March 14, 2006GW: Status and Future 10

Neutron 
star 
quakes 
and 
magnetars
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In Newton’s law of gravity the gravitational field satisfies the 
Poisson equation:

Gravitational field is described by a scalar field, the interaction 
is instantaneous and no gravitational waves.

In general relativity for weak gravitational fields, i.e.

in Lorentz gauge, i.e.                 Einstein’s equations reduce to 
wave equations in the metric perturbation:

Here                                      is the trace-reverse tensor.

What are Gravitational Waves? 

7

Mathematics of linearized theory

• In linearized theory metric is nearly that of flat spacetime:

ds2 = (ηαβ + hαβ) dxαdxβ, |hαβ| ! 1.

• Define trace-reversed metric perturbation h̄αβ = hαβ − 1
2ηαβηµνhµν and

adopt Lorentz gauge:
h̄αβ

,β = 0,

where a subscripted comma denotes the partial derivative with respect
to the coordinate associated with the index that follows the comma.
Lorentz gauge is just a gauge (coordinate) choice: four equations use up
4 degrees of freedom to specify spacetime coordinates. Initial data for
these equations is still free.

• In Lorentz gauge, the Einstein field equations are just a set of decoupled
wave equations



−
∂2

∂t2
+ ∇2



 h̄αβ = −16πT αβ.

• To understand propagation, it is easiest to look at plane waves:

h̄αβ = Aαβ exp(2πıkµx
µ),

for constant amplitudes Aαβ and wave vector kµ. Then the Einstein
equations imply that the wave vector is null kαkα = 0 (propagation at
the speed of light), and the gauge condition implies that the amplitude
and wave vector are orthogonal, Aαβkβ = 0.

• Further gauge conditions (adjustments of the initial data for the Lorentz
gauge equations) are possible. Just state them here: we will explicitly
construct them in Chapter 4. We can demand that

1. A0β = 0 ⇒ Aijkj = 0: Transverse wave; and

2. Aj
j = 0: Traceless wave amplitude.

These conditions can only be applied outside a sphere surrounding the
source. Together, they put the metric into the transverse-traceless (TT)
gauge. In TT gauge, h̄αβ = hαβ .
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Plane-wave solutions:

Gravitational waves travel at the speed of light.
Gauge conditions imply that                   Further gauge conditions 

For a wave traveling in the z-direction then 
Gauge conditions, transversality and traceless conditions imply

Only two independent amplitudes. Two independent degrees of 
freedom for polarization: plus-polarization and cross-polarization.

Transverse-Traceless Gauge and 
Number of Degrees of Freedom

7
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Using the TT gauge to understand gravitational waves

• Only two independent polarizations The TT gauge leaves only two
independent wave amplitudes out of the original 10. Take the wave to
move in the z-direction, so that kz = k, kx = ky = 0. Then gauge +
transversality ⇒ A0α = Azα = 0, leaving only Axx, Axy = Ayx, and Ayy

nonzero. Tracelessness ⇒ Ayy = −Axx. So there are only 2 independent
amplitudes, 2 independent degrees of freedom for polarization.

• A wave for which Axy = 0 produces a metric of the form

ds2 = −dt2 + (1 + h+)dx2 + (1 − h+)dy2 + dz2,

where h+ = Axx exp[ik(z − t)]. This produces opposite effects on proper
distance on the two axes, contracting one while expanding the other.

• If Axx = 0 then only the off-diagonal term hxy = h× is non-trivial, and
these can be obtained from the previous case by a 45◦ rotation.

• A general wave is a linear combination of these two. If one lags the other
in phase, the polarization is circular or elliptical. The existence of only
two polarizations is a property of any non-zero spin field that propagates
at the speed of light.

• The effect of a wave in TT gauge on a particle at rest can be computed
from the Christoffel symbols. Its initial acceleration is

d2

dτ 2
xi = −Γi

00 = −
1

2
(2hi0,0 − h00,i) = 0.

So the particle does not move. The TT gauge represents a coordinate
system that is comoving with freely-falling particles. Because h0α = 0,
TT-time is proper time on the clock of a freely falling particle at rest.

• Tidal forces show the action of the wave independently of coordinates.
For example, the geodesic deviation equation for the separation ξ of two
freely falling particles initially at rest is

d2

dτ 2
ξi = Ri

0j0ξ
j =

1

2
hij,00ξ

j.

This contains the same information as we saw in the metric above. The
Riemann tensor is gauge-invariant in linearized theory.
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A wave for which one of Axy = 0 produces a metric of the form

Note that the metric produces opposite effects on proper 
distance along x and y. 

If Axx = 0 then hxy = hx, the corresponding metric is the same as 
before rotated by π/4:

Existence of two polarizations is the property of any non-zero 
spin field that propagates at the speed of light.

The Space-Time Metric of GW
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these can be obtained from the previous case by a 45◦ rotation.

• A general wave is a linear combination of these two. If one lags the other
in phase, the polarization is circular or elliptical. The existence of only
two polarizations is a property of any non-zero spin field that propagates
at the speed of light.

• The effect of a wave in TT gauge on a particle at rest can be computed
from the Christoffel symbols. Its initial acceleration is

d2

dτ 2
xi = −Γi

00 = −
1

2
(2hi0,0 − h00,i) = 0.

So the particle does not move. The TT gauge represents a coordinate
system that is comoving with freely-falling particles. Because h0α = 0,
TT-time is proper time on the clock of a freely falling particle at rest.

• Tidal forces show the action of the wave independently of coordinates.
For example, the geodesic deviation equation for the separation ξ of two
freely falling particles initially at rest is

d2

dτ 2
ξi = Ri

0j0ξ
j =

1

2
hij,00ξ

j.

This contains the same information as we saw in the metric above. The
Riemann tensor is gauge-invariant in linearized theory.
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Tidal effect of GW
In the TT gauge, the effect of a wave on a particle at rest

So a particle at rest remains at rest. TT gauge is a coordinate 
system that is comoving with freely falling particles.
The waves have a tidal effect which can be seen by looking at the 
change in distance between two nearby freely falling particles:

Isaacson showed that a spacetime with GW will have curvature 
with the corresponding Einstein tensor given by

8
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Practical applications of the energy formula

• Relation between typical wave amplitude and the energy radi-

ated by a source. If we are far from a source of gravitational waves, we
can treat the waves by linearized theory. Then if we adopt TT gauge and
specialize the stress-energy tensor of the radiation to a flat background,
we get

T (GW )
αβ =

1

32π
hTT

µν ,αhTTµν
,β.

Since there are only two components, a wave traveling with frequency f
(wave number k = 2πf) and with a typical amplitude h in both polar-
izations carries an energy flux Fgw equal to (see Exercise 6)

Fgw =
π

4
f 2h2.

Putting in the factors of c and G and scaling to reasonable values gives

Fgw = 3 mW m−2
[

h

1 × 10−22

]2 [

f

1 kHz

]2

,

which is a very large energy flux even for this weak a wave. It is twice
the energy flux of a full moon! Integrating over a sphere of radius r,
assuming a total duration of the event τ , and solving for h, again with
appropriate normalisations, gives

h = 10−21
[

Egw

0.01M#c2

]1/2 [

r

20 Mpc

]−1 [

f

1 kHz

]−1 [

τ

1 ms

]−1/2

.

This is the formula for the “burst energy”, normalized to numbers ap-
propriate to a gravitational collapse occurring in the Virgo cluster. It
explains why physicists and astronomers regard the 10−21 threshold as so
important. But this formula could be applied to binary systems radiating
away their orbital gravitational binding energy over long periods of time
τ , for example.

• Curvature produced by waves. Although the Isaacson flux tensor
is an approximation, it is a very robust and satisfying approximation.
Isaacson showed that the background spacetime will actually exhibit a
small average curvature when the waves are contained on it, and that
this curvature has an Einstein tensor given by.

Gαβ = 8πT (GW )
αβ .
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Tidal Gravitational Forces

Gravitational effect of a 
distant source can only 
be felt through its tidal 
forces 
Gravitational waves are 
traveling, time-dependent 
tidal forces.
Tidal forces scale with 
size, typically produce 
elliptical deformations.
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Tidal Action of Gravitational Waves

Monday, 4 October 2010



Tidal Action of Gravitational Waves

Cross polarizationPlus polarization 
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GW Amplitude - Measure of Strain

δl

l

Gravitational waves cause a strain in space as 
they pass
Measurement of the strain gives the amplitude of 
gravitational waves
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Gravitational Wave Flux
Flux of gravitational waves can be shown to be 

where k = 2πf is the wave number. For a wave with an 
amplitude h in both polarizations the energy flux is

This is a large flux (twice that of full Moon) for even a 
source with a very small amplitude! Integrating over a 
sphere of radius r and assuming that the signal lasts for a 
duration τ gives the amplitude in terms of energy in GW

52

EXERCISE 3 (a) Use the metric for a plane wave with “+” polarisation,

ds2 = −dt2 + (1 + h+)dx2 + (1 − h+)dy2 + dz2,

to show that the square of the coordinate speed (in the TT coordinate system) of a photon moving in the
x-direction is

(

dx

dt

)2

=
1

1 + h+
.

This is not identically 1. Does this violate relativity? Why or why not?

(b) Imagine that an experimenter at the center of our circle of particles sends a photon to the particle at
coordinate location x = L on the positive-x axis, and that the photon is reflected when it reaches the particle
and returns to the experimenter. Suppose further that this takes such a short time that h+ does not change
during the experiment. To first order in h+, show that the experimenter’s proper time that elapses between
sending out the photon and receiving it back is (2 + h+)L.

(c) The experimenter says that this proves that the proper distance between herself and the particle is
(1 + h+/2)L. Is this a correct interpretation of her experiment? If the experimenter uses an alternative
measuring process for proper distance, such as laying out a number of standard meter sticks between her
location and the particle, would that produce the same answer? Why or why not?

(d) Show that if the experimenter simultaneously does the same experiment with a particle on the y-axis at
y = L, that photon will return after a proper time of (2− h+)L.

(e) The difference in these return times is 2h+L and can be used to measure the wave’s amplitude. Does
this result depend on our use of TT gauge, i.e. would we have obtained the same answer had we used a
different coordinate system?

EXERCISE 4 A frequently asked question is: if gravitational waves alter the speed of light, as we seem to
have used here, and if they move the ends of the interferometer closer and further apart, might these effects
not cancel, so that there would be no measurable effect on light? Answer this question. You may want to
examine the calculation in Exercise 3: did we make use of the changing distance between the ends, and why?

EXERCISE 5 Beam detectors. (a) Derive the full three-term return equation for the rate of change of the
return time for a beam traveling through a plane wave h+ along the x-direction, when the wave is moving
at an angle θ to the z-axis in the x − z plane. The formula is reproduced here:

dtreturn

dt
= 1 +

1

2
{(1 − sin θ)h+(t + 2L)− (1 + sin θ)h+(t)

+2 sin θh+[t + L(1 − sin θ)]} .

(b) Show that, in the limit where L is small compared to a wavelength of the gravitational wave, the derivative
of the return time is the derivative of t + δL, where δL = L cos2 θ h(t) is the excess proper distance for small
L. Explain where the factor of cos2 θ comes from.
(c) Examine the limit of the three-term formula in (a) when the gravitational wave is traveling along the
x-axis too (θ = ±π/2): what happens to light going parallel to a gravitational wave?

EXERCISE 6 Suppose a plane wave, traveling in the z-direction in linearized theory, has both polarization
components h+ and h×. Show that its energy flux in the z-direction, T (GW )0z, is

〈T (GW )0z〉 =
k2

32π
(A2

+ + A2
×

)

where the angle brackets denote an average over one period of the wave.

EXERCISE 7 Gauge transformations. The tensor transformation law of the components of the metric

tensor from coordinates xα to xµ′

is

gµ′ν′ =
∂xα

∂xµ′

∂xβ

∂xν′
gαβ .
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Practical applications of the energy formula

• Relation between typical wave amplitude and the energy radi-

ated by a source. If we are far from a source of gravitational waves, we
can treat the waves by linearized theory. Then if we adopt TT gauge and
specialize the stress-energy tensor of the radiation to a flat background,
we get

T (GW )
αβ =

1

32π
hTT

µν ,αhTTµν
,β.

Since there are only two components, a wave traveling with frequency f
(wave number k = 2πf) and with a typical amplitude h in both polar-
izations carries an energy flux Fgw equal to (see Exercise 6)

Fgw =
π

4
f 2h2.

Putting in the factors of c and G and scaling to reasonable values gives

Fgw = 3 mW m−2
[

h

1 × 10−22

]2 [

f

1 kHz

]2

,

which is a very large energy flux even for this weak a wave. It is twice
the energy flux of a full moon! Integrating over a sphere of radius r,
assuming a total duration of the event τ , and solving for h, again with
appropriate normalisations, gives

h = 10−21
[

Egw

0.01M#c2

]1/2 [

r

20 Mpc

]−1 [

f

1 kHz

]−1 [

τ

1 ms

]−1/2

.

This is the formula for the “burst energy”, normalized to numbers ap-
propriate to a gravitational collapse occurring in the Virgo cluster. It
explains why physicists and astronomers regard the 10−21 threshold as so
important. But this formula could be applied to binary systems radiating
away their orbital gravitational binding energy over long periods of time
τ , for example.

• Curvature produced by waves. Although the Isaacson flux tensor
is an approximation, it is a very robust and satisfying approximation.
Isaacson showed that the background spacetime will actually exhibit a
small average curvature when the waves are contained on it, and that
this curvature has an Einstein tensor given by.

Gαβ = 8πT (GW )
αβ .
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Gravitational Wave Observables
Luminosity  = (Asymmetry factor) v10 

A strong function of velocity:  During merger a binary black 
hole in gravitational waves outshines the entire Universe in 
light

Amplitude from a source of size r at a distance D 

h = (Asymmetry factor) (M/D) (M/r)
Amplitude gives strain in space as a wave propagates h = ΔL/L 

Frequency of the waves is the dynamical frequency f ~ √ρ
For binaries dominant gravitational-wave frequency is twice 
the orbital frequency

Polarization
In Einstein’s theory two polarizations - plus and cross
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Gravity's Standard Sirens 

Gravitational Vs EM Waves
EM waves are transverse waves, 
with two polarizations, travel at 
the speed of light
Production: electronic transitions 
in atoms and accelerated charges 
– physics of small things
Incoherent superposition of 
many, many waves
Detectors sensitive to the 
intensity of the radiation 
Normally EM waves cannot be 
followed in phase
Intensity falls off as inverse 
square of the distance to source
Directional telescopes

GW waves are also transverse 
waves, with two polarizations, travel 
at the speed of light
Production: coherent motion stellar 
and super-massive black holes, 
supernovae, big bang, …
Often, a single coherent wave, but 
stochastic background expected
GW detectors are sensitive to the 
amplitude of the radiation
Normally, waves followed in phase, 
great increase in signal visibility
Amplitude falls off as inverse of the 
distance to source
Sensitive to wide areas over the sky
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Mass Quadrupole Radiation
General retarded solution of the field 
equation is

At distances far from the source one can 
expand R around r=|x|

This gives for the field in terms of the 
moments of the energy momentum tensor

xi

yi

13

Chapter 4 – Mass-Quadrupole Radiation

Field of a source in linearized theory.

• Isolated source The Einstein equation is


−
∂2

∂t2
+ ∇2



 h̄αβ = −16πT αβ.

Its general solution is the following retarded integral for the field at a
position xi and a time t in terms of the source at a position yi and the
retarded time:

h̄αβ(xi, t) = 4
∫ 1

R
T αβ(t − R, yi)d3y,

where we define
R2 = (xi − yi)(xi − yi).

• Expansion for the far field of a slow-motion source. Let us suppose
that the origin of coordinates is in or near the source, and the field point
xi is far away. Then we define r2 = xixi and we have r2 # yiyi. We
can therefore expand the term R in the denominator in terms of yi. The
lowest order is r, and all higher-order terms are smaller than this by
powers of r−1. Therefore, they contribute terms to the field that fall off
faster than 1/r, and they are negligible in the far zone. So we can simply
replace R by r in the denominator, and take it out of the integral.

The R inside the time-argument of the source term is not so simple. We
handle that in the following way. Let us define t′ = t − r (the retarded
time to the origin of coordinates) and expand

t − R = t − r + niyi + O(1/r), with ni = xi/r, nini = 1.

The terms of order 1/r are negligible for the same reason as above, but
the first term in this expansion must be taken into account. It depends
on the direction to the field point, given by the unit vector ni. We use
this by making a Taylor expansion in time on the time-argument of the
source. The combined effect of these approximations is

h̄αβ =
4

r

∫

[

T αβ(t′, yi) + T αβ
,0(t

′, yi)njyj +
1

2
T αβ

,00(t
′, yi)njnkyjyk + . . .

]

d3y.

We will need the Taylor expansion out to this order.
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can therefore expand the term R in the denominator in terms of yi. The
lowest order is r, and all higher-order terms are smaller than this by
powers of r−1. Therefore, they contribute terms to the field that fall off
faster than 1/r, and they are negligible in the far zone. So we can simply
replace R by r in the denominator, and take it out of the integral.

The R inside the time-argument of the source term is not so simple. We
handle that in the following way. Let us define t′ = t − r (the retarded
time to the origin of coordinates) and expand

t − R = t − r + niyi + O(1/r), with ni = xi/r, nini = 1.

The terms of order 1/r are negligible for the same reason as above, but
the first term in this expansion must be taken into account. It depends
on the direction to the field point, given by the unit vector ni. We use
this by making a Taylor expansion in time on the time-argument of the
source. The combined effect of these approximations is

h̄αβ =
4

r

∫

[

T αβ(t′, yi) + T αβ
,0(t

′, yi)njyj +
1

2
T αβ

,00(t
′, yi)njnkyjyk + . . .

]

d3y.

We will need the Taylor expansion out to this order.
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Radiation Zone Expansions
Together with the conservation law it follows that

The field depends only on the various moments of 
the source stress-energy tensor defined by

14

• Moments of the source. The integrals in the above expression contain
moments of the components of the stress-energy. It is useful to give these
names. Use M for moments of the density T 00, P for moments of the
momentum T 0i, and S for moments of the stress T ij. Here is our notation:

M(t′) =
∫

T 00(t′, yi)d3y, Mj(t
′) =

∫

T 00(t′, yi)yjd
3y,

Mjk(t
′) =

∫

T 00(t′, yi)yjykd
3y;

P !(t′) =
∫

T 0!(t′, yi)d3y, P !
j(t

′) =
∫

T 0!(t′, yi)yjd
3y;

S!m(t′) =
∫

T !m(t′, yi)d3y.

These are the moments we will need.

Among these moments there are some identities that follow from the
conservation law in linearized theory, T αβ

,β = 0, which we use to replace
time derivatives of components of T by divergences of other components
and then integrate by parts. The identities we will need are

Ṁ = 0, Ṁk = P k, Ṁ jk = P jk + P kj ;

Ṗ j = 0, Ṗ jk = Sjk.

These can be applied recursively to show, for example, one further very
useful relation:

d2M jk

dt2
= 2Sjk.

• Radiation zone expansions. Using these relations and notation it is
not hard to show that

h̄00(t, xi) =
4

r
M +

4

r
P jnj +

4

r
Sjk(t′) + . . . ;

h̄0j(t, xi) =
4

r
P j +

4

r
Sjk(t′)nk + . . . ;

h̄jk(t, xi) =
4

r
Sjk(t′) + . . . .

In these expressions, one must remember that the moments are evaluated
at the retarded time t′ = t−r (except for those moments that are constant
in time), and they are multiplied by components of the unit vector to the
field point nj = x/r.
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The Quadrupole Formula
In TT gauge, the expressions simplify considerably

Here the projection operator is

Note that the time-time part is the Newtonian field, the momentum 
part is zero, leaving only the spatial part which is explicitly traceless 
and transverse. In fact, using the conservation law the famous 
quadrupole formula follows 

Luminosity in gravitational waves is given by

16

• The wave amplitude in TT gauge. The result of applying this gauge
transformation to the original amplitudes is:

h̄TT 00 =
4M

r
;

h̄TT 0i = 0;

h̄TT ij =
4

r

[

⊥ik⊥j! Sk! +
1

2
⊥ij (Sk!n

kn! − Sk
k)

]

,

where the notation ⊥jk represents the projection operator perpendicular
to the direction ni to the field point,

⊥jk= δjk − njnk.

It can be verified that this tensor is transverse to the direction ni and is
a projection, in the sense that it projects to itself:

⊥jk nk = 0, ⊥jk⊥ k
! =⊥j! .

The time component of the field is not totally eliminated in this gauge
transformation: it must contain the Newtonian field of the source. (In
fact we have succeeded in eliminating the momentum part of the field,
which is also static. Our gauge transformation has incorporated a Lorentz
transformation that has put us into the rest frame of the source.) But this
is a constant term. Since waves are time-dependent, the time-dependent
part of the field is now purely spatial, transverse (because everything is
multiplied by ⊥), and traceless (as can be verified by explicit calculation).

The expression for the spatial part of the field actually does not depend
on the trace of Sjk, as can be seen by constructing the trace-free part of
the tensor, defined as:

S–jk = Sjk −
1

3
δjkS!

!.

In fact, it is more conventional to use the mass moment here instead of
the stress, so we also define

M—jk = M jk −
1

3
δjkM !

!, S–jk =
1

2

d2M—jk

dt2
.

In terms of M— the far field is:

h̄TT ij =
2

r

(

⊥ik⊥j! M̈—k! +
1

2
⊥ij M̈—k!n

kn!.
)
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This is the mass quadrupole field. In other books the notation is some-
what different than we have adopted here. In particular, our quadrupole
tensor M— is what is called I– in Misner, Thorne, and Wheeler (1973) and
Schutz (1985).

If we define the TT-part of the quadrupole tensor to be

MTT
ij =⊥ k

i ⊥ l
jMkl −

1

2
⊥ij⊥kl Mkl,

then we can rewrite the radiation field as

h̄TTij =
2

r

··
M TTij.

• Interpretation of the radiation. It is useful to look at this expres-
sion and ask what actually generates the radiation. The source of the
radiation is the second time-derivative of the second moment of the mass
density T 00. The moments that are relevant are those in the plane per-
pendicular to the line of sight. So it is interesting that not only is the
action of the wave transverse, but also the generation of radiation uses
only the transverse distribution of mass. In fact we learn from this two
equally important messages,

– the only motions that produce the radiation are the ones transverse
to the line of sight; and

– the induced motions in a detector mirror the motions of the source
projected onto the plane of the sky.

If most of the mass is static, then the time-derivatives allow us to con-
centrate only on the part that is changing.
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Energy Radiated in Gravitational Waves.

• Mass quadrupole radiation. The radiation field we have computed
can be put into our energy flux formula for the TT gauge, and this can
be integrated over a sphere. It is not a difficult calculation, but it does
require some simple angular integrals over the vector ni, which depends
on the angular direction on the sphere. These identities are

∫

ninjdΩ =
4π

3
δij,

∫

ninjnkdΩ = 0,

∫

ninjnkn!dΩ =
4π

15

(

δijδk! + δikδj! + δi!δjk
)

.

Using these, one gets the following simple formula for the total luminosity
of the source if only mass-quadrupole radiation is computed:

Lmass
gw =

1

5

...
M—

jk ...
M—jk.

Radiation in the Newtonian limit.

• Relaxation of restrictions of linearized theory. The calculation so
far has been within the assumptions of linearized theory. Real sources
are likely to have significant self-gravity. This means, in particular, that
there will be a significant component of the source energy in gravitational
potential energy, and this must be taken into account.

Fortunately, the formulas we have derived are robust. It turns out that
the leading order radiation field from a Newtonian source has the same
formula as in linearized theory.
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Application to a Binary System
For a binary system of two compact stars orbiting in the 
x-y plane the quadrupole moments are

which shows that the radiation is emitted at twice the 
orbital frequency.

Here D is the distance to the binary, M and ν are the 
total mass and symmetric mass ratio, φ(t) is the orbital 
phase, currently known to a high order in post-
Newtonian approximation, ι is the inclination of the 
binary with the line-of-sight, v is the velocity of the stars

19

Chapter 5 – Radiation from a binary system

• The quadrupole moment of a binary system. The motion of two
stars in a binary is a classic source calculation. We shall calculate here
only for two equal-mass stars in a circular orbit, governed by Newtonian
dynamics. If the stars have mass m and an orbital radius R, orbiting in
the x−y plane with angular velocity ω, then it is easy to show that their
quadrupole moment components are

Mxx = 2mR2 cos2(ωt), Myy = 2mR2 sin2(ωt), Mxy = 2mR2 cos(ωt) sin(ωt).

By using trigonometric identities, we convert these to functions of a fre-
quency 2ω and discard the parts that do not depend on time:

Mxx = mR2 cos(2ωt), Myy = −mR2 cos(2ωt), Mxy = mR2 sin(2ωt).

This shows that the radiation will come out at twice the orbital frequency,
essentially because in half an orbital period the mass distribution has
returned to its original configuration.

The trace of the quadrupole tensor is already zero.

• The radiated field in different directions. The general expression
for the radiation field is hTT ij = (2/r)M̈TT ij.

1. Radiation perpendicular to the orbital plane. This is the z-direction,
and the tensor M is already transverse to it. So the radiation compo-
nents can be read off of M . We see that h+ = −(8mω2R2/r) cos(2ωt)
and h× = (8mω2R2/r) sin(2ωt). Both polarisations are present but
are out of phase, so this represents purely circularly polarised radia-
tion.

2. Radiation along the x-axis. The xx and xy components of M will be
projected out, and when M is made trace-free again its components
become MTTyy = −(mR2/2) cos(2ωt) and MTTzz = (mR2/2) cos(2ωt).
This is pure +-polarised radiation with amplitude 4mω2R2/r. This
is half the amplitude of each of the polarisation components in the
z-direction, so the radiation is much weaker here. The energy flux
will be only 1/8 of the flux up the rotation axis. By symmetry this
conclusion holds for any direction in the orbital plane.

At directions between the ones we have calculated there will be a mixture
of polarisations, which leads to a general elliptically polarised wave. By
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6.5.3.3 Phasing formulas. The foregoing evolution equations for the orbital phase can be
solved in several equivalent ways [134], each correct to the required post-Newtonian order, but
numerically different from one another. For instance, one can retain the rational polynomial
F(v)/E(v) in Equation (118) and solve the two differential equations numerically, thereby obtaining
the time evolution of ϕ(t). Alternatively, one might re-expand the rational function F(v)/E(v)
as a polynomial in v, truncate it to order vn (where n is the order to which the luminosity is
given), thereby obtaining a parametric representation of the phasing formula in terms of polynomial
expressions in v:

ϕ(v) = ϕref +
n∑

k=0

ϕkvk, t(v) = tref +
n∑

k=0

tkvk, (119)

where ϕref and tref are a reference phase and time, respectively. The standard post-Newtonian
phasing formula goes one step further and inverts the second of the relations above to express v as
a polynomial in t (again truncated to appropriate order), which is then substituted in the first of
the expressions above to obtain a phasing formula as an explicit function of time:

ϕ(t) =
−1
ντ5

{
1 +

(
3715
8064

+
55
96

ν

)
τ2 − 3π

4
τ3 +
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9275495
14450688

+
284875
258048

ν +
1855
2048

ν2

)
τ4

+
(
− 38645

172032
+

65
2048

ν

)
πτ5 ln τ +

[
831032450749357
57682522275840

− 53
40

π2 − 107
56

(γ + ln(2τ))

+
(
−126510089885

4161798144
+

2255
2048

π2

)
ν +

154565
1835008

ν2 − 1179625
1769472

ν3

]
τ6

+
(

188516689
173408256

+
488825
516096

ν − 141769
516096

ν2

)
πτ7

}
, (120)

v2 =
τ2

4

{
1 +

(
743
4032

+
11
48

ν

)
τ2 − π

5
τ3 +

(
19583
254016

+
24401
193536

ν +
31
288

ν2

)
τ4

+
(
−11891

53760
+

109
1920

ν

)
πτ5 +

[
−10052469856691

6008596070400
+

π2

6
+

107
420

(γ + ln 2τ)

+
(

3147553127
780337152

− 451
3072

π2

)
ν − 15211

442368
ν2 +

25565
331776

ν3

]
τ6

+
(
−113868647

433520640
− 31821

143360
ν +

294941
3870720

ν2

)
πτ7

}
. (121)

In the above formulas v = πMfgw and τ = [ν(tC − t)/(5 M)]−1/8, tC being the time at which the
two stars merge together and the gravitational wave frequency fgw formally diverges.

6.5.3.4 Waveform polarizations. The post-Newtonian formalism also gives the two polar-
izations h+ and h× as multipole expansions in powers of the parameter v. To lowest order, the two
polarizations of the radiation from a binary with a circular orbit, located at a distance D, with
total mass M and symmetric mass ratio ν = m1m2/M2, are given by

h+ =
2νM

D
v2(1 + cos2 ι) cos[2ϕ(t)], h× =

4νM

D
v2 cos ι sin[2ϕ(t)], (122)

where ι is the inclination of the orbital plane with the line of sight and v is the velocity parameter
introduced earlier.

An interferometer will record a certain combination of the two polarizations given by

h(t) = F+h+ + F×h×, (123)
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Gravity's Standard Sirens 

Burst Sources

Gravitational wave 
bursts

Black hole collisions
Supernovae
gamma-ray bursts (GRBs)

Short-hard GRBs 
could be the result of 
merger of a neutron star 
with another NS or a BH

Long-hard GRBs 
could be triggered by 
supernovae
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Gravity's Standard Sirens 

Continuous Wave Sources

Rapidly spinning neutron stars 
or other objects

Mountains on neutron stars
Low mass X-ray binaries

Accretion induced 
asymmetry

Magnetars and other compact 
objects

Magnetic field induced 
asymmetries

Relativistic instabilities
r-modes, etc.
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Radiation from Rotating Neutron Stars

Wobbling neutron star

R-modes

“Mountain” on neutron star

Accreting neutron star
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Gravity's Standard Sirens 

Stochastic Backgrounds

Primordial background
Quantum fluctuations produce a background GW that 
is amplified by the background gravitational field

Phase transitions in the Early Universe
Cosmic strings - kinks can form and “break” producing 
a burst of gravitational waves

Astrophysical background
A population of Galactic white-dwarf binaries 
produces a background above instrumental noise in 
LISA
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Gravity's Standard Sirens 

ET f ~ 10 Hz probes te ~ 10-20 s (T ~ 106 GeV)

Slide from Shellard
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Gravity's Standard Sirens 

Compact Binary Mergers
Binary neutron stars
Binary black holes
Neutron star–black hole 
binaries

Loss of energy leads to 
steady inspiral whose 
waveform has been 
calculated to order v7 in 
post-Newtonian theory
Knowledge of the waveforms 
allows matched filtering
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Alessandra Buonanno November 2-3, 2006

Binary coalescence time

E = 1
2µv2 − Gµ M

r = −Gµ M
2r ⇒ r = −Gµ M

2E

ṙ = dr
dE

dE
dt = −64

5
Gµ M2

r3 integrating ⇒ r(t) =
(
r4
0 −

256
5 GµM2 ∆τcoal

)1/4

If r(tf) # r0 ⇒ ∆τcoal = 5
256

r4
0

Gµ M2

Examples:

• LIGO/VIRGO/GEO/TAMA source: M = (10 + 10)M" at r0 ∼ 500 km,

fGW ∼ 40Hz, T0 ∼ 0.05sec ⇒ ∆τcoal ∼ 1 sec

• LISA source: M = (106 + 106)M" at r0 ∼ 200 × 106 km,

fGW ∼ 4.5 × 10−5 Hz, T0 ∼ 11 hours ⇒ ∆τcoal ∼ 1 year

General Relativity Trimester, Institut Henri Poincaré, Paris 23
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Gravity's Standard Sirens 

Expected Annual Coalescence Rates

BNS NS-BH BBH

Initial LIGO
(2002-06)

0.02 0.006 0.009

Advanced LIGO 
x12 sensitivity (2014)

40 10 20

Einstein Telescope x 
100 sensitivity (2025) Million 100,000 Millions

Rates quoted are mean of the distribution; In a 95% 
confidence interval, rates uncertain by 3 orders of magnitude
Rates are quoted for

Binary Neutron Stars (BNS) 
Binary Black Boles (BBH)
Neutron Star-Black Hole binaries (NS-BH) 
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Post-Newtonian Evolution

Einstein’s field equations

System of 10 second order differential equations for the metric components
gµν(xρ) (where µ, ν, ρ, · · · = 0, 1, 2, 3)

Gµν
[
g, ∂g, ∂2g

]
︸ ︷︷ ︸

Einstein’s tensor
Gµν=Rµν− 1

2 gµν R

=
8πG

c4
Tµν [g,φ]︸ ︷︷ ︸
stress-energy tensor

of the matter fields (φ)

Einstein-Hilbert Lagrangian

L
[
g, ∂g, ∂2g,φ

]
=

c4

16πG

√
−g R︸ ︷︷ ︸

gravitational part

+Lφ [g,φ]
︸ ︷︷ ︸
matter part

The Einstein field equations imply, via the contracted Bianchi identity, the
conservation equation of the matter fields

∇νGµν ≡ 0 =⇒ ∇νTµν = 0
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15 Gravitational Radiation from Post-Newtonian Sources

Part A: Post-Newtonian Sources

2 Einstein’s Field Equations

The field equations of general relativity form a system of ten second-order partial
differential equations obeyed by the space-time metric gαβ ,

Gαβ [g, ∂g, ∂2g] =
8πG

c4
Tαβ [g], (9)

where the Einstein curvature tensor Gαβ ≡ Rαβ− 1
2R gαβ is generated, through

the gravitational coupling κ = 8πG/c4, by the matter stress-energy tensor Tαβ .
Among these ten equations, four govern, via the contracted Bianchi identity,
the evolution of the matter system,

∇µGαµ ≡ 0 =⇒ ∇µTαµ = 0. (10)

The space-time geometry is constrained by the six remaining equations, which
place six independent constraints on the ten components of the metric gαβ ,
leaving four of them to be fixed by a choice of a coordinate system.

In most of this paper we adopt the conditions of harmonic, or de Donder,
coordinates. We define, as a basic variable, the gravitational-field amplitude

hαβ =
√
−g gαβ − ηαβ , (11)

where gαβ denotes the contravariant metric (satisfying gαµgµβ = δα
β ), where g is

the determinant of the covariant metric, g = det(gαβ), and where ηαβ represents
an auxiliary Minkowskian metric. The harmonic-coordinate condition, which
accounts exactly for the four equations (10) corresponding to the conservation
of the matter tensor, reads

∂µhαµ = 0. (12)
The equations (11, 12) introduce into the definition of our coordinate system a
preferred Minkowskian structure, with Minkowski metric ηαβ . Of course, this is
not contrary to the spirit of general relativity, where there is only one physical
metric gαβ without any flat prior geometry, because the coordinates are not
governed by geometry (so to speak), but rather are chosen by researchers when
studying physical phenomena and doing experiments. Actually, the coordinate
condition (12) is especially useful when we view the gravitational waves as per-
turbations of space-time propagating on the fixed Minkowskian manifold with
the background metric ηαβ . This view is perfectly legitimate and represents a
fructuous and rigorous way to think of the problem when using approximation
methods. Indeed, the metric ηαβ , originally introduced in the coordinate condi-
tion (12), does exist at any finite order of approximation (neglecting higher-order
terms), and plays in a sense the role of some “prior” flat geometry.

The Einstein field equations in harmonic coordinates can be written in the
form of inhomogeneous flat d’Alembertian equations,

!hαβ =
16πG

c4
ταβ , (13)
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The multipole moments of a post-Newtonian source

Let ταβ be the pseudo-stress energy tensor of the matter and gravitational fields
(in harmonic coordinates)

ταβ = |g| Tαβ

︸ ︷︷ ︸
matter term

+
c4

16πG
Λαβ[h, ∂h, ∂2h]

︸ ︷︷ ︸
gravitational source term

The result (obtained by matching) is [Blanchet 1995,1998]

M(hαβ) =
+∞∑

#=0

∂L

(
1

r
Fαβ

L (t− r/c)

)

︸ ︷︷ ︸
“linearized” approximation

+ FP
B=0

!−1
Ret

[
rBM(Λαβ)

]

︸ ︷︷ ︸
term due to non-linearities

The post-Newtonian source is described by the multipole-moment functions

Fαβ(t) = FP
B=0

∫
d3x |x|BxLταβ(x, t) where ταβ ≡ PN(ταβ)

from which one deduces the source’s multipole moments IL and JL.
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minosity F as a function of the post-Newtonian expansion parameter12 v. This is related to the
frequency fgw of the dominant component of gravitational waves emitted by the binary system by

v3 = πMfgw,

where M is the total mass of the system. The expansions for a circular binary are [80, 81, 79]

E = −νMv2

2

{
1 +

(
−9 + ν

12

)
v2 +

(
−81 + 57ν − ν2

24

)
v4

+
(
−675

64
+

[
34445
576

− 205π2

96

]
ν − 155

96
ν2 − 35

5184
ν3

)
v6 +O(v8)

}
, (113)

and

F =
32ν2v10

5

{
1−

(
1247
336

+
35
12

ν

)
v2 + 4πv3 +

(
−44711

9072
+

9271
504

ν +
65
18

ν2

)
v5

−
(

8191
672

+
583
24

)
πv5 +

[
6643739519
69854400

+
16
3

π2 − 1712
105

(γ + ln(4v))

+
(
−4709005

272160
+

41
48

π2

)
ν − 94403

3024
ν2 − 775

324
ν3

]
v6

+
(
−16285

504
+

214745
1728

ν +
193385
3024

ν2

)
πv7 +O(v8)

}
, (114)

where γ = 0.577 . . . is Euler’s constant.

6.5.3.2 Evolution equation for the orbital phase. Starting from these expressions, one
requires that gravitational radiation comes at the expense of the binding energy of the system
(see, e.g., [134]):

F = −dE

dt
, (115)

the energy balance equation. This can then be used to compute the (adiabatic) evolution of the
various quantities as a function of time. For instance, the rate of change of the orbital velocity
ω(t) = v3/M (M being the total mass) can be computed using:

dω(t)
dt

=
dω

dv

dv

dE

dE

dt
=

3v2

M

F(v)
E′(v)

,
dv

dt
=

dv

dE

dE

dt
=
−F(v)
E′(v)

, (116)

where E′(v) = dE/dv. Supplemented with a differential equation for t,

dt =
dt

dE

dE

dv
= −E′(v)

F , (117)

one can solve for the evolution of the system’s orbital velocity. Similarly, the evolution of the
orbital phase ϕ(t) can be computed using

dϕ(t)
dt

=
v3

M
,

dv

dt
=
−F(v)
E′(v)

. (118)

12In Newton’s theory a two-body problem can be reduced to a one-body problem, in which a body of reduced
mass µ moves in an effective potential. The parameter v is the velocity of the reduced mass, if the orbit is circular.
In the extreme mass ratio limit ν → 0, v is the velocity of the smaller mass.
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Binding energy and GW flux are given by

The energy balance: GW flux must result in a loss of energy from 
the system
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In the extreme mass ratio limit ν → 0, v is the velocity of the smaller mass.
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6.5.3.3 Phasing formulas. The foregoing evolution equations for the orbital phase can be
solved in several equivalent ways [134], each correct to the required post-Newtonian order, but
numerically different from one another. For instance, one can retain the rational polynomial
F(v)/E(v) in Equation (118) and solve the two differential equations numerically, thereby obtaining
the time evolution of ϕ(t). Alternatively, one might re-expand the rational function F(v)/E(v)
as a polynomial in v, truncate it to order vn (where n is the order to which the luminosity is
given), thereby obtaining a parametric representation of the phasing formula in terms of polynomial
expressions in v:

ϕ(v) = ϕref +
n∑

k=0

ϕkvk, t(v) = tref +
n∑

k=0

tkvk, (119)

where ϕref and tref are a reference phase and time, respectively. The standard post-Newtonian
phasing formula goes one step further and inverts the second of the relations above to express v as
a polynomial in t (again truncated to appropriate order), which is then substituted in the first of
the expressions above to obtain a phasing formula as an explicit function of time:
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. (121)

In the above formulas v = πMfgw and τ = [ν(tC − t)/(5 M)]−1/8, tC being the time at which the
two stars merge together and the gravitational wave frequency fgw formally diverges.

6.5.3.4 Waveform polarizations. The post-Newtonian formalism also gives the two polar-
izations h+ and h× as multipole expansions in powers of the parameter v. To lowest order, the two
polarizations of the radiation from a binary with a circular orbit, located at a distance D, with
total mass M and symmetric mass ratio ν = m1m2/M2, are given by

h+ =
2νM

D
v2(1 + cos2 ι) cos[2ϕ(t)], h× =

4νM

D
v2 cos ι sin[2ϕ(t)], (122)

where ι is the inclination of the orbital plane with the line of sight and v is the velocity parameter
introduced earlier.

An interferometer will record a certain combination of the two polarizations given by

h(t) = F+h+ + F×h×, (123)
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Black hole binary waveforms

A
m

pl
itu

de

Time

Late-time dynamics of 
compact binaries is highly 
relativistic, dictated by non-
linear general relativistic 
effects

Post-Newtonian theory, 
which is used to model the 
evolution, is now known to 
O(v7)

The shape and strength of the 
emitted radiation depend on 
many parameters of the 
binary: masses, spins, distance, 
orientation, sky location, ...

Increasing Spin
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Structure of the waveform

Radiation is emitted not just at twice the orbital 
frequency but at all other harmonics too

These amplitude corrections have a lot of 
additional structure 

Increased mass reach of detectors
Greatly improved parameter estimation accuracies

Blanchet, Damour, Iyer, Jaranowski, Schaefer, Will, Wiseman
Andrade, Arun, Buonanno, Gopakumar, Joguet, Esposito-Farase,Faye, Kidder, Nissanke, Ohashi, Owen, Ponsot, Qusaillah, Tagoshi …
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Edge-on vs face-on binaries 
McKechan et al (2009)
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McKechan et al (2009)
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McKechan et al (2009)
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Black Hole Mergers from 
Numerical Relativity

After several decades NR is now able to compute 
accurate waveforms for use in extracting signals and 
science

New physics - e.g. super-kick velocities
Analytical understanding of merger dynamics

We should be able to see further and more massive 
objects

A Big Industry: Golm, Jena (Germany), Maryland, Princeton, Rochester, Baton 
Rouge, Georgia Tech, Caltech, Cornell (USA), Canada, Mexico, Spain, Austria
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Comparison of Inspiral and Inspiral-
Merger-Ringdown waveforms: Distance 

Reach (left) Parameter Estimation (right)Why NR for GW astronomy?

• Significant improvements in the “distance reach” and parameter-estimation accuracies for “high-mass” binaries. 

• NR of  sources other than compact binaries, provide useful information for fine tuning the searches. 

2

[Ajith & Bose (2009)]

10 Msun

100 Msun

dL = 1 GpcSNR = 8 in Adv LIGO
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Caltech/Cornell Computer SimulationTop: 3D view of orbit of black holes
Middle: Depth - Curvature of Spacetime
Colors: Rate of flow of time
Arrows: Velocity of flow of space
Bottom: Waveform; red line shows current time
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Caltech/Cornell Computer Simulation
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Effective-One-Body Formalism for Inspiral-
Merger-Ringdown DynamicsAlternative way of calibrating EOB with NR

6

[Damour & Nagar (2009)]

Two free parameters in the EOB potential: 

“Improved resummation” of  the RR force: 

“Next to quasi-circular corrections” to the waveforms.

NR calibration of  the maximum GW amplitude.

3/3

EOB calibrated to NR: non-precessing equal-mass 

equal-spin waveforms

7

[Pan et al. 2009]

• Calibrated to SpEC simulation of  an equal-mass binary with equal-amplitude anti aligned spins: 
!

1
 = !

2
 = 0.43757

• Improvements made in modeling spin Hamiltonian and radiation reaction [Talks by E. Barausse 
and Y. Pan]
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Conclusions from Lecture 1

Gravitational waves are a well-understood phenomena
Well confirmed by binary pulsars

Analytical and numerical relativity have progressed 
well 

Today we understand the dynamics of binary black holes 
pretty well

Challenges remain when “matter” is included
In particular we do not have a good understanding of binary 
neutron star mergers, relativistic instabilities, etc.
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Gravitational Wave 
Detectors

B.S. Sathyaprakash
Cardiff University, Cardiff, United Kingdom

ISAPP School, Pisa, Italy, September 27-29, 2010
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Gravitational Wave 
Detectors - Now 
and in the Future
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Interferometric gravitational-wave detectors 
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Interferometric gravitational-wave detectors 

For Typical Astronomical sources
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G070221-00-Z 

American Laser Interferometer Gravitational-Wave 
Observatory (LIGO) at Hanford
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G070221-00-Z 

LIGO at Livingstone, Louisiana
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G070221-00-Z 

German-British GEO600
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French Italian VIRGO near PISA
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Large Cryogenic Gravitational Telescope
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A light beam starts at a point P and reaches a point 
Q a distance L away. 

Clocks at P and Q have proper times t and tf. 

Gravitational wave h+ is incident at an angle ϴ to 
the light beam

A Simple Experiment

of groups to explore the intrinsically wide-band technique of laser interferometry, leading to the
projects described in Section 4.3.1 below. However, the excellent sensitivity of resonant detec-
tors within their narrow bandwidths makes them suitable for specialized, high-frequency searches,
including cross-correlation searches for stochastic backgrounds [119]. Therefore, novel and imagi-
native designs for resonant-mass detectors continue to be proposed. For example, it is possible to
construct large spheres of a similar size (1 to 3 m diameter) to existing cylinders. This increases
the mass of the detector and also improves its direction-sensing. One can in principle push to
below 10−21 with spheres [117]. A spherical prototype called MiniGRAIL[234] has been operated
in the Netherlands[181]. A similar prototype called the Schenberg detector[203] is being built in
Brazil [21]. Nested cylinders or spheres, or masses designed to sense multiple modes of vibration
may also provide a clever way to improve on bar sensitivities [86].

While these ideas have interesting potential, funding for them is at present (2008) very re-
stricted, and the two remaining bar detectors are likely to be shut down in the near future, when
the interferometers begin operating at sensitivities clearly better than 10−21.

4.2 Principles of the operation of beam detectors

Interferometers use laser light to measure changes in the difference between the lengths of two
perpendicular (or nearly perpendicular) arms. Typically, the arm lengths respond differently to
a given gravitational wave, so an interferometer is a natural instrument to measure gravitational
waves. But other detectors also use electromagnetic radiation, for example, ranging to spacecraft
in the solar system and even pulsar timing.

The basic equation we need is for the effect of a plane linear gravitational wave on a beam
of light. Suppose the angle between the direction of the beam and the direction of the plane
wave is θ. We imagine a very simple experiment in which the light beam originates at a clock,
whose proper time is called t, and is received by a clock, whose proper time is tf . The beam and
gravitational-wave travel directions determine a plane, and we denote the polarization component
of the gravitational wave that acts in this plane by h+(t), as measured at the location of the
originating clock. The proper distance between the clocks, in the absence of the wave, is L. If the
originating clock puts timestamps onto the light beam, then the receiving clock can measure the
rate of arrival of the timestamps. If there is no gravitational wave, and if the clocks are ideal, then
the rate will be constant, which can be normalized to unity. The effect of the gravitational wave
is to change the arrival rate as a function of the emission rate by

dtf
dt

= 1 +
1

2
(1 + cos θ) {h+[t + (1 − cos θ)L] − h+(t)} . (42)

This is very simple: the beam of light leaves the emitter at the time when the gravitational wave
of phase t passes the emitter, and it reaches the receiver at the time when the gravitational wave
of phase t + (1− cos θ)L is passing the receiver. So in the plane wave case, only the amplitudes of
the wave at the emitting and receiving events affect the time delay.

In order to use such an arrangement to detect gravitational waves, one needs two very stable
clocks. The best clocks today are stable to a few parts in 1016 [40], which implies that the
minimum amplitude of gravitational waves that could be detected by such a two-clock experiment
is h ∼ 10−15. However, this equation is also fundamental to the detection of gravitational waves
by pulsar timing, in which the originating ‘clock’ is a pulsar. By correlating many pulsar signals,
one can beat down the single-pulsar noise. This is described below in Section 4.4.2.

An arrangement that uses only one clock is one that sends a beam out to a receiver, which
then reflects or retransmits (transponds) the beam back to the sender. The sender has the clock,
which measures variations in the round-trip time. This method has been used with interplanetary
spacecraft, which has the advantage that the only clock is on the ground, which can be made more

29

ϴP Q Light

GW

L
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If we consider the round trip of a light 
beam from P to Q and back to Q then the 
time of return varies as:

In the long wavelength approximation this 
becomes
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Formula for return time

stable than one carried in a spacecraft (see Section 4.4.1). For the same arrangement as above,
the return time treturn varies at the rate

dtreturn

dt
= 1 +

1

2
{(1 − cos θ)h+(t + 2L) − (1 + cos θ)h+(t)

+ 2 cos θ h+[t + L(1 − cos θ)]} . (43)

This is known as the three-term relation, the third term being the wave strength at the time the
beam returns back to the sender.

But the sensitivity of such a one-path system as a gravitational wave detector is still limited
by the stability of the clock. For that reason, interferometers have become the most sensitive
beam detectors: effectively one arm of the interferometer becomes the ‘clock’, or at least the time
standard, that variations in the other arm are compared to. Of course, if both arms are affected by a
gravitational wave in the same way, then the interferometer will not see the wave. But this happens
only in very special geometries. For most wave arrival directions and polarizations, the arms are
affected differently, and a simple interferometer measures the difference between the round-trip
travel time variations in the two arms. For the triangular space array LISA, the measured signal
is somewhat more complex (see Section 4.4.3 below), but it still preserves the principle that the
time reference for one arm is a combination of the others.

4.2.1 The response of a ground-based interferometer

Ground-based interferometers are the most sensitive detectors operating today, and are likely
to make the first direct detections [197]. The largest detectors operating today are the LIGO
detectors [302], two of which have arm lengths of 4 km. This is much smaller than the wavelength
of the gravitational wave, so the interaction of one arm with a gravitational wave can be well
approximated by the small-L approximation to Equation (43), namely

dtreturn

dt
= 1 + sin2 θLḣ+(t). (44)

(See [69] for first corrections to the short-arm approximation.) To analyze the full detector, where
the second arm will normally point out of the plane we have been working in up till now, it is
helpful to go over to a tensorial expression, independent of special coordinate orientations. The
gravitational wave will act in the plane transverse to the propagation direction; let us call that
direction N̂ and let us set up radiation basis vectors êR

x and êR
y in the transverse plane, such that

êR
x lies in the plane formed by the wave propagation direction and the arm of our gravitational

wave sensor, which lies along the x-axis of the detector plane, whose unit vector is êx. (For a
picture of this geometry, see the left-hand panel of Figure 3, where for the moment we are ignoring
the y-arm of the detector shown there.)

With these definitions, the wave amplitude h+ is the one that has êR
x and êR

y as the axes of its
ellipse. The full wave amplitude is described, as in Equation (6), by the wave tensor

h(t) = h+(t)e+ + h×(t)e×, (45)

where e+ and e× are the polarization tensors associated with these basis vectors (compare Equa-
tion (4)):

e+ = (êR
x ⊗ êR

x − êR
y ⊗ êR

y ), e× = (êR
x ⊗ êR

y + êR
y ⊗ êR

x ). (46)

The unique way of expressing Equation (44) in terms of h is

(

dtreturn

dt

)

x−arm

= 1 + Lêx · ḣ · êx. (47)

30

stable than one carried in a spacecraft (see Section 4.4.1). For the same arrangement as above,
the return time treturn varies at the rate

dtreturn

dt
= 1 +

1

2
{(1 − cos θ)h+(t + 2L) − (1 + cos θ)h+(t)

+ 2 cos θ h+[t + L(1 − cos θ)]} . (43)

This is known as the three-term relation, the third term being the wave strength at the time the
beam returns back to the sender.

But the sensitivity of such a one-path system as a gravitational wave detector is still limited
by the stability of the clock. For that reason, interferometers have become the most sensitive
beam detectors: effectively one arm of the interferometer becomes the ‘clock’, or at least the time
standard, that variations in the other arm are compared to. Of course, if both arms are affected by a
gravitational wave in the same way, then the interferometer will not see the wave. But this happens
only in very special geometries. For most wave arrival directions and polarizations, the arms are
affected differently, and a simple interferometer measures the difference between the round-trip
travel time variations in the two arms. For the triangular space array LISA, the measured signal
is somewhat more complex (see Section 4.4.3 below), but it still preserves the principle that the
time reference for one arm is a combination of the others.

4.2.1 The response of a ground-based interferometer

Ground-based interferometers are the most sensitive detectors operating today, and are likely
to make the first direct detections [197]. The largest detectors operating today are the LIGO
detectors [302], two of which have arm lengths of 4 km. This is much smaller than the wavelength
of the gravitational wave, so the interaction of one arm with a gravitational wave can be well
approximated by the small-L approximation to Equation (43), namely

dtreturn

dt
= 1 + sin2 θLḣ+(t). (44)
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In an interferometer we have two arms, say 
x-arm and y-arm. 

What interferometers measure is the differential 
change in the return time
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Timing formula for an interferometer
This does not depend on any special orientation of the arm relative to the wave direction, and
does not depend on the basis we chose in the transverse plane, so we can use it as well for the
second arm of the interferometer, no matter what its orientation. Let us assume it lies along the
unit vector by êy. (We do not, in fact, have to assume that the two arms are perpendicular to each
other, but it simplifies the diagram a little.) The return-time derivative along the second arm is
then given by

(

dtreturn

dt

)

x−arm

= 1 + Lêy · ḣ · êy

. The interferometer responds to the difference between these times,

(

dδtreturn

dt

)

=

(

dtreturn

dt

)

x−arm

−
(

dtreturn

dt

)

y−arm

= Lêx · ḣ · êx − Lêy · ḣ · êy

. By analogy with the wave tensor, we define the detector tensor d by [146]

d = L(êx ⊗ êx − êy ⊗ êy). (48)

(If the arms are not perpendicular this expression would still give the correct tensor if the unit
vectors lie along the actual arm directions.) Then we can express the differential return time rate
in the simple invariant form

(

dδtreturn

dt

)

= d : ḣ, (49)

where the notation d : h ≡ dlmhlm denotes the Euclidean scalar product of the tensors d and h.
Equation (49) can be integrated over time to give the instantaneous path-length (or time-delay, or
phase) difference between the arms, as measured by the central observer’s proper time clock:

δtreturn(t) = d : h. (50)

This is a robust and compact expression for the response of any interferometer to any wave in
the long-wavelength (short-arm) limit. Its dependence on the wave direction is called its antenna
pattern.

It is conventional to re-express this measurable in terms of the stretching of the arms of the
interferometer. Within our approximation that the arms are shorter than a wavelength, this makes
sense: it is possible to define a local inertial coordinate system that covers the entire interferometer,
and within this coordinate patch (where light travels at speed 1) time differences measure proper
length differences. The differential return time is twice the differential length change of the arms:

δL(t) =
1

2
d : h. (51)

For a bar detector of length L lying along the director â, the detector tensor is

d = Lâ ⊗ â, (52)

although one must be careful that the change in proper length of a bar is not simply given by
Equation (51), because of the restoring forces in the bar.

When dealing with observations by more than one detector, it is not convenient to tie the
alignment of the basis vectors in the sky plane with those in the detector frame, as we have done
in the left-hand panel of Figure 3, since the detectors will have different orientations. Instead it
will usually be more convenient to choose polarization tensors in the sky plane according to some
universal reference, e.g., using a convenient astronomical reference frame. The right-hand panel of
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Response of a detector to an incident wave

Alessandra Buonanno November 2-3, 2006

Binary-detector orientation

General Relativity Trimester, Institut Henri Poincaré, Paris 6

stable than one carried in a spacecraft (see Section 4.4.1). For the same arrangement as above,
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x and êR
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x − êR
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y in the transverse plane, such that

êR
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x and êR
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This does not depend on any special orientation of the arm relative to the wave direction, and
does not depend on the basis we chose in the transverse plane, so we can use it as well for the
second arm of the interferometer, no matter what its orientation. Let us assume it lies along the
unit vector by êy. (We do not, in fact, have to assume that the two arms are perpendicular to each
other, but it simplifies the diagram a little.) The return-time derivative along the second arm is
then given by

(

dtreturn

dt

)

x−arm

= 1 + Lêy · ḣ · êy

. The interferometer responds to the difference between these times,

(

dδtreturn

dt

)

=

(

dtreturn

dt

)

x−arm

−
(

dtreturn

dt

)

y−arm

= Lêx · ḣ · êx − Lêy · ḣ · êy

. By analogy with the wave tensor, we define the detector tensor d by [146]

d = L(êx ⊗ êx − êy ⊗ êy). (48)

(If the arms are not perpendicular this expression would still give the correct tensor if the unit
vectors lie along the actual arm directions.) Then we can express the differential return time rate
in the simple invariant form

(

dδtreturn

dt

)

= d : ḣ, (49)

where the notation d : h ≡ dlmhlm denotes the Euclidean scalar product of the tensors d and h.
Equation (49) can be integrated over time to give the instantaneous path-length (or time-delay, or
phase) difference between the arms, as measured by the central observer’s proper time clock:

δtreturn(t) = d : h. (50)

This is a robust and compact expression for the response of any interferometer to any wave in
the long-wavelength (short-arm) limit. Its dependence on the wave direction is called its antenna
pattern.

It is conventional to re-express this measurable in terms of the stretching of the arms of the
interferometer. Within our approximation that the arms are shorter than a wavelength, this makes
sense: it is possible to define a local inertial coordinate system that covers the entire interferometer,
and within this coordinate patch (where light travels at speed 1) time differences measure proper
length differences. The differential return time is twice the differential length change of the arms:

δL(t) =
1

2
d : h. (51)

For a bar detector of length L lying along the director â, the detector tensor is

d = Lâ ⊗ â, (52)

although one must be careful that the change in proper length of a bar is not simply given by
Equation (51), because of the restoring forces in the bar.

When dealing with observations by more than one detector, it is not convenient to tie the
alignment of the basis vectors in the sky plane with those in the detector frame, as we have done
in the left-hand panel of Figure 3, since the detectors will have different orientations. Instead it
will usually be more convenient to choose polarization tensors in the sky plane according to some
universal reference, e.g., using a convenient astronomical reference frame. The right-hand panel of
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Figure 3 shows the general situation, where the basis vectors α̂ and β̂ are rotated by an angle ψ
from the basis used in the left-hand panel. The polarization tensors on this new basis,

ε+ = (α̂ ⊗ α̂ − β̂ ⊗ β̂), ε× = (α̂ ⊗ β̂ + β̂ ⊗ α̂), (53)

are found by the following transformation from the previous ones:

ε+ = e+ cos 2ψ + e× sin 2ψ,

ε× = −e+ sin 2ψ + e× cos 2ψ. (54)

Then one can write Equation (51) as

δL(t)

L
= F+(θ, φ, ψ)h+(t) + F×(θ, φ, ψ)h×(t), (55)

where F+ and F× are the antenna pattern functions for the two polarizations defined on the
sky-plane basis by

F+ ≡ d : e+, F× ≡ d : e×. (56)

Using the geometry in the right-hand panel of Figure 3, one can show that

F+ =
1

2

(

1 + cos2 θ
)

cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ,

F× =
1

2

(

1 + cos2 θ
)

cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ. (57)

Figure 3: The relative orientation of the sky and detector frames (left panel) and the effect of a
rotation by the angle ψ in the sky frame (left panel).

These are the antenna-pattern response functions of the interferometer to the two polarizations
of the wave as defined in the sky plane [359]. If one wants the antenna pattern referred to the
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Capabilities of networks of gravitational wave detectors: three figures of merit 19

Network Maximum
Range

Detection
Volume

Capture
Rate

(at 80%)

Capture
Rate

(at 95%)

Sky Cov-
erage

Network
Accuracy

L 1.00 1.23 - - 33.6% -

HLV 1.43 5.76 2.95 4.94 71.8% 0.98

HHLV 1.74 8.98 4.86 7.81 47.3% 1.15
HLVA 1.69 8.93 6.06 8.28 53.5% 5.09

HHLVJ 1.82 12.1 8.37 11.25 73.5% 4.65

HHLVI 1.81 12.3 8.49 11.42 71.8% 3.93

HLVJA 1.76 12.1 8.71 11.25 85.0% 7.48

HHLVJI 1.85 15.8 11.43 14.72 91.4% 6.01

HLVJAI 1.85 15.8 11.50 14.69 94.5% 9.01

Table 2. Comparison of various networks. H: LIGO Hanford single detector; HH:
LIGO Hanford two detectors; L: LIGO Livingston; V: VIRGO; J: LCGT; A: AIGO
or LIGO Australia; I: INDIGO. Maximum Range is the maximum detection distance,
scaled to the maximum range of a single detector. Detection Volume is the volume
inside the antenna pattern. The remaining columns are the figures of merit. Capture
Rate measures the overall detection rate and is given for two different values of the
duty cycle: 80% to represent a likely figure at the start of operations, and 95% to
represent a reasonable long-term operation goal. Sky Coverage measures how isotropic
the network antenna pattern is. Network Accuracy reflects angular accuracy: the
typical solid angle uncertainty is inversely proportional to Network Accuracy, so that
larger values denote more accurate networks. The first row of the table is for a single
detector, to facilitate comparisons.

the detector is moved to Australia. These numbers are consistent with the results of
the much more extensive comparison of these two networks in an unpublished internal

technical report of the LIGO Scientific Collaboration [Weiss et al., 2010], and they give

a very strong scientific reason for placing the LIGO instrument in Australia.

In addition to the possible detector in Australia, there is now a good prospect for

the LCGT detector in Japan. This suggests that we compare several possible networks,

depending on whether the Australian option goes ahead. If there is no detector in
Australia but there is one in Japan, then we will have the network HHLVJ. Its overall

detection volume, at 12.1, is significantly greater that that of HHLV (8.98) and HLVA

(8.93), reflecting the fact that there is one further detector. The improvement in Capture

Rate is even greater: with a Japanese detector and duty cycles of 80% the rate of

detection would be almost twice as much as for the basic HHLV, and more than a third

better than HLVA. The network is also significantly more isotropic as well, with [SC]
at 73.5%. Adding the baseline to Japan also greatly improves the direction-finding,

although not by as much as the longer Australian baselines would: for HHLVJ the value

of [NA] is 4.65, much better than the 1.15 turned in by HHLV but a bit below the 5.09

value of HLVA. Nevertheless, the improvement over the basic HHLV still represents a
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Source Localization

A single detector cannot localize the 
source on the sky

The antenna pattern is too wide: good for sky 
coverage but bad for source localization

A network of three or more detectors 
needed to reconstruct the source

Alternatively, if the source lasts long enough, the 
detector motion can mimic multiple detectors 
and triangular a source
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Here T0 is the arrival time at geo-centre; R is the true location 
of the source and di is a vector giving the location of the source 
in geocentric frame.
The probability distribution for measured arrival times ti in each 
detector can be assumed to be Gaussian. In a network of N 
detectors the joint distribution will be

Using Bayes’ theorem one can compute the posterior probability 
distribution for true times.
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Detector Horizon Range f (Hz) σf (Hz) σt(ms) at ρ = 8
aLIGO NOSRM [19] 360 160 65 43 0.46

aLIGO BNS [19] 490 215 110 106 0.19
Advanced Virgo [3] 350 155 120 100 0.20

LCGT [2] 365 160 100 88 0.22

Table 1. Advanced detector sensitivity for BNS systems. The sensitivity of
the detector is encoded in the BNS Horizon (distance at which an optimally
oriented and located signal gives an SNR of 8) and the BNS Range (the sky and
orientation averaged distance at which a BNS gives SNR 8). The Horizon is a
factor of 2.26 larger than the Range. The frequency bandwidth σf determines
the timing width σt at a given SNR through (1). The two sets of advanced LIGO
numbers correspond to no signal recycling (NOSRM) and BNS optimized (BNS)
configurations.

where the waveform ĥ is normalized such that
∫

|ĥ(f)|2/S(f)df = 1. The
approximations used to obtain this formula break down at low signal to noise ratios,
where second order effects become important [18].

In Table 1, we provide the sensitivities, frequency bandwidths and timing
accuracies for the various advanced gravitational wave detectors. Numerous
configurations have been proposed for the advanced detectors [1], and it is likely that
several will be used over the lifetime of the detectors. To illustrate the differences,
we consider two aLIGO configurations, one with no signal recycling mirror (NOSRM)
which is likely to be an early configuration, and one optimized for BNS detection
(BNS) which may be used in later science runs.

For the most part, advanced detectors will be sensitive to an optimally oriented
and located BNS to a horizon distance of around 360 Mpc, although the BNS optimized
aLIGO configuration provides a horizon of almost 500 Mpc. The frequency bandwidth
of a BNS signal in the detectors will be around 100Hz, leading to a timing accuracy of
0.2ms at an SNR of 8. The aLIGO NOSRM configuration has a noise curve which rises
more sharply at high frequency. Consequently it has a significantly smaller bandwidth
and a timing accuracy of almost 0.5ms at SNR 8, more than a factor of 2 larger than
the other configurations listed.

For the remainder of this paper, we make the simplifying assumption that all
the advanced detectors have the same sensitivity and bandwidth. Our standardized
advanced detector will have a BNS Horizon of 360 Mpc (correspondingly, a BNS range
of 160 Mpc) and a bandwidth of 100 Hz. It is relatively straightforward to scale the
results to other parameter choices by using (1).

2.2. Localization

The measured time of arrival of a signal in a network of detectors can be used to
reconstruct the source location. Timing alone will not provide a distance estimate,
although this is readily given by performing a fully coherent analysis of the data
[20, 16]. For our purposes a gravitational wave signal is described by the location of
the source R and the time To at which the signal passes through the center of the
earth. Since our primary focus is localization, we take R to be a unit vector describing
only the position of the source and not its distance.

The time at which the signal passes through detector i is given by

Ti = To + R · di , (3)

Localization with advanced GW network 4

where di encodes the separation between detector i and the center of the earth
(expressed in seconds). The distribution of the measured arrival times ti in the various
detectors, given the actual arrival times Ti, is given by

p(ti|Ti) =
∏

i

1√
2πσi

exp
[
−(ti − Ti)2

2σ2
i

]
. (4)

Measurements of the arrival times in each detector can be used to construct a
posterior probability distribution for the source’s sky location R. This is done by
applying Bayes’ theorem to obtain the posterior distribution for the actual arrival
times as a function of the observations as

p(Ti|ti) ∝ p(Ti) exp

[
∑

i

−(ti − Ti)2

2σ2
i

]
. (5)

The posterior distribution is the product of the prior distribution p(Ti) for the arrival
times with the likelihood. Since we are interested in obtaining a distribution for the
sky location of the event, we would like to re-express (5) in terms of R. To do so, we
introduce the measured sky position r and arrival time to (in analogy to equation (3))
as:

ti = to + r · di . (6)
Strictly, for an event observed in multiple detectors, the set of equations (6) for to and
r may be over-determined and not allow any solution. However, for a gravitational
wave signal these should admit an (approximately) consistent solution, which can be
found using a minimization technique [21]. We will assume that this has been done
and proceed to eliminate ti in favour of r and to. Similarly, we make use of (3)
eliminate Ti from (5) in favour of R and To. The prior distributions are naturally
taken to be uniform over the sphere (for R) and uniform in time (for To). Finally,
after marginalizing over To, the posterior distribution for R is

p(R|r) ∝ p(R) exp
[
−1

2
(r−R)T M(r−R)

]
. (7)

The matrix M, describing the localization accuracy, is given by

M =
1

∑
i σ−2

i

∑

i,j

DijDT
ij

2σ2
i σ2

j

, (8)

where Dij = di − dj . A similar result has been obtained previously in [22].
Equation (7) provides a simple extension to an arbitrary number of detectors of

the two and three detector result given in [5]. The localization expression has all the
features we would expect, specifically: localization only depends upon the difference in
arrival time between the various detectors; localization is improved by extending the
baseline between detectors and by better timing accuracy in the detectors; the timing
measurement in a pair of detectors can only serve to restrict the location of the source
in the direction parallel to the detector separation. The origin of the normalization
pre-factor for the matrix M arises due to the marginalization over the geocentric
arrival time To based upon timing information at all detectors in the network.

The matrix M is symmetric and can be diagonalized to obtain three orthogonal
eigen-directions (êx, êy, êz) with localization accuracies σx,σy,σz respectively. Thus,
the posterior distribution for the sky location is

p(R|r) ∝ p(R) exp

[
−1

2

(
(x−X)2

σ2
x

+
(y − Y )2

σ2
y

+
(z − Z)2

σ2
z

)]
, (9)
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Figure 1. The localization accuracy for face on BNS at 160 MPc in various
networks of advanced detecors. The ellipses contain the 90% localization regions
for sources from varioius points in the sky. A × is plotted at points where
the network would not confidently detect the system. The plots show the
localization for six different networks: Hanford–Hanford–Livingston–LCGT
(HHJL); Australia–Hanford–Livingston–LCGT (AHJL); Hanford–Hanford–
Livingston–Virgo (HHLV); Australia–Hanford–Livingston–Virgo (AHLV);
Hanford–Hanford–Livingston–LCGT–Virgo(HHJLV); Australia–Hanford–
Livingston–LCGT–Virgo(AHJLV).

Table 3 gives the results of the simulation. For each detector network, the
expected number of detectable signals as well as the number localizable withing 1,
5, 10 and 20 deg2 is given. The numbers are normalized to give 40 signals with SNR
greater than 8 in a single detector, in accordance with the best estimate of the annual
astrophysical rate [25]. However, there is (at least) an order of magnitude uncertainty
in the rate of BNS signals. Additionally, some relatively simplistic assumptions have
been made for the detection threshold. Thus, the results in Table 3 should be taken as
illustrative: significant difference between network performance are meaningful, but
the actual values should not be taken too literally.

The results for a population of sources again provide a strong case for constructing
as many detectors at different sites as possible. As well as an increase in the absolute
number of observable sources, additional detectors greatly increase the fraction of
sources which can be well localized. Specifically, for the HHL network no sources

Fairhurst, 2010
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Network Detectable Sources Sources Localized within
1 deg2 5 deg2 10 deg2 20 deg2

HHL 59 0 0 0 0
AHL 59 0.4 5 13 30
HHJL 85 0.2 2 5 14
AHJL 85 1 14 36 59
HHLV 83 0.4 5 l3 35
AHLV 84 2 21 48 76
HHJLV 112 2 19 47 77
AHJLV 114 3 34 84 111

Table 3. Sensitivity and localization capability of various different advanced
detector networks to a population of BNS signals. The number of signals is
normalized so that there are 40 signals observed in any single detector above
SNR=8. This corresponds to the annual astrophysical rate estimate presented in
[25]. For each detected signal, we calculate the localization area and count those
which are localized within 1, 5, 10 and 20 deg2.

will be localized within 20 deg2. With the introduction of a third site (AHL, HHLV,
HHJL) a significant fraction (20 to 50%) of sources are localized within 20 deg2, and
the loudest signals may be localized within 5 deg2. Moving to a four site network
(AHLV, AHJL, HHJLV) further improves localization, with the majority of signals
localized within 20 deg2, and as many as 20% to within 5 deg2. The five site network
provides the most remarkable results, with virtually all signals localized within 20 deg2,
a third within 5 deg2 and the loudest to within a square degree.

Figure 2 provides a graphical representation of the same data, showing the
localization distribution areas for different networks. In all cases, the addition of more
sites improves the localization. Interestingly, for the networks involving an Australian
detector, the peak of the localization distribution occurs between 5 and 10 deg2. This
corresponds to the typical area of the wide field electromagnetic transient telescopes
currently being operated or under construction.

4. Discussion

We have obtained an expression for the localization accuracy of a gravitational wave
signal in a network of detectors. The localization expression makes use only of
timing information in the various detectors with the timing uncertainty taken to
be inversely proportional to both SNR and signal bandwidth. This extends the
results of [5] to networks with any number of detectors. As expected, localization
only depends upon the difference in arrival time between the various detectors, is
improved by better timing accuracy in the detector and longer baselines between
detectors. The expressions presented here make numerous simplifying assumptions
by, for example, treating the data as Gaussian and stationary, using only timing
information for localization, taking the leading order contributions to the timing and
localization distributions, neglecting systematic uncertainties in the waveform and
instrumental calibration. Thus, while they providing useful localization estimates,
a real implementation of source localization would need to address many additional
issues.

We have examined localization of BNS sources with a network of advanced

Fairhurst, 2010
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S5 Sensitivity
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Virgo VSR-2
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Gravity's Standard Sirens 

Future Improvements

Enhanced Detectors (2009-11)
2 x increase in sensitivity
8 x increase in rate

Advanced Detectors, LIGO and Virgo (2015- …)
12 x increase in sensitivity
Over 1000 x increase in rate

3G Detectors: Einstein Telescope (2027+)
100 x increase in sensitivity
106 increase in rate
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Gravity's Standard Sirens 

Einstein Telescope

ET is a conceptual design study supported, for 
about 3 years (2008-2011), by the European  
Commission under the Framework Programme 7 
EU financial support ~ 3M€
Aim of the project is the delivery of a conceptual 
design of a 3rd generation GW observatory
Sensitivity of the apparatus~10 better than 
advanced detectors
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Gravity's Standard Sirens 

Expected Future Sensitivities
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LISA
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Laser Interferometer Space Antenna

ESA-NASA collaboration 
Intended for launch in 2020

3 space craft, 5 million km 
apart, in heliocentric orbit
Test masses are passive 
mirrors shielded from solar 
radiation
Crafts orbit out of the 
ecliptic always retaining their 
formation
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Beyond LISA
Big bang observer (NASA)
DECIGO (Deci-hertz 
Gravitational Observatory)

Both detectors will operate in 
the 0.1-10 Hz band not covered 
by LISA or ground-based 
detectors

Concepts under study for 
cosmography and to measure 
primordial background at the 
level of ΩGW ~ 10-15
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