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Compact binaries for fundamental 
physics, cosmology and astrophysics

Black holes and neutron stars are the most compact objects
The potential energy of a test particle is equal to its rest mass 
energy

Being the most compact objects, they are also the most 
luminous sources of gravitational radiation

The luminosity of a binary could increase a million times in the 
course of its evolution through a detector’s sensitivity band
The GW luminosity of a binary black hole outshines, during 
merger, the EM luminosity of all stars in the Universe

Compact binaries are standard sirens
GW observations measure both the apparent luminosity (strain) 
and absolute luminosity (chirp rate) of a source
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Compact binaries: theoretically the best 
studied sources

In general relativity the two-body problem has no known 
exact analytic solution

Approximate methods have been used to understand the 
dynamics: post-Newtonian (PN) approximation 

The binary evolves by emitting gravitational-waves whose 
amplitude and frequency both grow with time - a chirp

Coalescence results in a single deformed black hole which emits 
“ringdown” signals with characteristic frequency and damping time 

Progress in analytical and numerical relativity over the last 
decade has led to a good understanding of the merger 
dynamics

5
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Black hole binary waveforms

A
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Time

Late-time dynamics of 
compact binaries is highly 
relativistic, dictated by non-
linear general relativistic 
effects

Post-Newtonian theory, which 
is used to model the 
evolution, is now known to O
(v7)

The shape and strength of the 
emitted radiation depend on 
many parameters of the 
binary: masses, spins, distance, 
orientation, sky location, ...

Increasing Spin
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Radiation is emitted not just at twice the orbital frequency but 
at all other harmonics too

This is the “full” waveform (FWF). The waveform corresponding 
to n=0 is called the restricted PN waveform (RFW)

These amplitude corrections have a lot of additional structure 

Increased mass reach of detectors

Greatly improved parameter estimation accuracies

Structure of the full post-Newtonian 
(PN) waveform

Blanchet, Buonanno, Damour, Iyer, Jaranowski, Schaefer, Will, Wiseman
Andrade, Arun, Gopakumar, Joguet, Esposito-Farase,Faye, Kidder, Nissanke, Ohashi, Owen, Ponsot, Qusaillah, Tagoshi …
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Fundamental Physics
Properties of gravitational waves

Test wave generation formula beyond quadrupole approx.
Number of GW polarizations?
Do gravitational waves travel at the speed of light?

Equation-of-State of supra-nuclear matter
Signature neutron star equation-of-state in gravitational waves 
from binary neutron star mergers, NS normal modes, etc.

Black hole no-hair theorem and cosmic censorship
Are black hole candidates black holes of general relativity?

Merger dynamics of spinning black hole binaries
Understanding the two-body problem in general relativity

Measuring/limiting the mass of neutrino
Simultaneous obs. of neutrinos and GW from SN
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Fundamental Physics: 
Testing GR with GW 

observations
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BBH Signals as Testbeds for GR

Gravity gets ultra-strong during a BBH merger compared 
to any observations in the solar system or in binary pulsars

In the solar system: φ/c2 ~ 10-6 

In a binary pulsar it is still very small: φ/c2 ~ 10-4 

Near a black hole φ/c2 ~ 1
Merging binary black holes are the best systems for 
strong-field tests of GR

Dissipative predictions of gravity are not even tested at the 
1PN level

In binary black holes even (v/c)7 PN terms might not be 
adequate for high-SNR (~100) events

12
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Do gravitational waves travel at the 
speed of light?

Coincident observation of a supermassive black hole binary 
and the associated gravitational radiation can be used to 
constrain the speed of gravitational waves:

If Δt is the time difference in the arrival times of GW and EM 
radiation and D is the distance to the source then the 
fractional difference in the speeds is

It is important to study what the EM signatures of massive 
BBH mergers are

Can be used to set limits on the mass of the graviton slightly 
better than the current limits.

Will (1994, 98)13
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Massive graviton causes 
dispersion

A massive graviton induces dispersion in the 
waves

Arrival times are altered due to a massive 
graviton - frequency-dependent effect

One can test for the presence of this term by 
including an extra term in our templates

Bounding the mass of the graviton 5

2. Parameter estimation using full waveform templates

As our waveform model we begin with amplitude-corrected, general relativistic

waveforms which are 3PN accurate in amplitude and 3.5PN accurate in phasing. We

ignore the spins of the bodies in the binary system. Previous calculations used waveforms
which are of Newtonian order in amplitude and 2PN order in phase. As opposed to the

Newtonian waveforms, the 3PN amplitude-corrected waveforms contain all harmonics

from Ψ up to 8 Ψ, where Ψ is the orbital phase (the leading quadrupole component is

at 2Ψ).

The effect of a massive graviton is included in the expression for the orbital phase

following Ref. [6]. The wavelength-dependent propagation speed changes the arrival
time ta of a wave of a given emitted frequency fe relative to that for a signal that

propagates at the speed of light; that time is given, modulo constants,by

ta = (1 + Z)

[

te +
D

2λ2
gf 2

e

]

, (1)

where fe and te are the wave frequency and time of emission as measured at the emitter,

respectively, Z is the cosmological redshift, and

D ≡
(1 + Z)

a0

∫ ta

te

a(t)dt , (2)

where a0 = a(ta) is the present value of the scale factor (note that D is not exactly the

luminosity distance ‡). This affects the phase of the wave accordingly. In the frequency

domain, this adds a term to the phase ψ(f) of the Fourier transform of the waveform

given by ∆ψ(f) = −πD/feλ2
g. Then, for each harmonic of the waveform with index k,

one adds the term

∆ψk(f) =
k

2
∆ψ(2f/k) = −

k2

4
πD/feλ

2
g . (3)

Here k = 2 denotes the dominant quadrupole term, with phase 2Ψ, k = 1 denotes the

term with phase Ψ, k = 3 denotes the term with phase 3Ψ, and so on.

This is an adhoc procedure because a massive graviton theory will undoubtedly

deviate from GR not just in the propagation effect, but also in the way gravitational wave

damping affects the phase, as well as in in the amplitudes of the gravitational waveform.

If, for example, such a theory introduces a leading correction to the quadrupole phasing
ψquad ∼ (πMfe)−5/3 of order (λ/λg)2×(πMfe)−5/3, where M is the chirp mass, then the

propagation induced phasing term (3) will be larger than this correction term by a factor

of order k2(D/M)(πMfe)8/3 ∼ (D/M)v8. Since v ∼ 0.1 for the important part of the

binary inspiral, and D ∼ hundreds to thousands of Mpc, it is clear that the propagation

term will dominate. In any case, given the fact that there is no generic theory of a

massive graviton, we have no choice but to omit these unknown contributions.

‡ For Z % 1, D is roughly equal to luminosity distance DL. Hence we have assumed D & DL in the
case of ground based detectors for which we consider sources at 100 Mpc. For LISA, we have carefully
accounted for this difference.
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Bounding the mass of the graviton 4
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Figure 1. Bounds on the graviton Compton wavelength that can be deduced from
AdvLIGO, Einstein Telescope and LISA. The mass ratio is 2. The distance to the
source is assumed to be 100 Mpc for AdvLIGO and ET, and 3 Gpc for LISA.

ET and LISA are plotted as a function of the total mass of the binary for a fixed mass

ratio of m2/m1 = 2. For AdvLIGO and ET, the source is assumed to be at a luminosity

distance of 100 Mpc and for LISA the SMBH binary is assumed to be 3 Gpc away.

The bounds from the Newtonian RWF and 3PN FWF are compared. Inclusion of

amplitude corrections and the higher harmonics improve the bounds for both ground-

based configurations and at the high-mass end for LISA. The improvement is more
than an order of magnitude for heavier binaries, because higher harmonics play a more

prominent role for such systems. Typical bounds, with the use of higher harmonics,

for AdvLIGO, ET and LISA are 1012 km, 1013 km and 1016 km, respectively. The best

bound, not surprisingly, will be provided by LISA, thanks to its low frequency sensitivity,

to the high signal-to-noise ratios with which it will be observing the supermassive binary

black hole coalescences, and to the very large distances involved. Though our results
are for a specific location and orientation of the binary, we have verified that the bounds

are not significantly altered by different source positions and orientations.

The remainder of the paper provides details underlying these results. In Sec. 2, we

describe the full-waveform model used, the noise curves for the various detectors, and

the technique of matched filtering. Section 3 details the bounds obtainable from the

various detectors.

Arun and Will (2009)Bound on λg
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Improving bounds with IMR Signals
By including the merger 
and ringdown part of 
the coalescence it is 
possible to improve the 
bound on graviton 
wavelength
Equal mass compact 
binaries assumed to be 
at 1 Gpc
ET can achieve 2 to 3 
orders of magnitude 
better bound than the 
best possible model-
independent bounds

2

FIG. 1. Left. Optimal SNR (bottom panels) and the lower bound on the Compton wavelength !g of graviton (top panels) from equal-mass

binaries located at 1 Gpc detected in the Adv. LIGO (black traces) and ET (grey traces) detectors using their smallest low-frequency cutoffs

(10 Hz and 1 Hz, respectively). Horizontal axes report the total mass of the binary. Solid and dashed lines correspond to IMR and restricted

3.5PN waveforms, respectively. Right. Same plots for the case of binaries located at 3 Gpc detected in the LISA detector.

graviton can be placed from the GW observations by applying

appropriate matched filters.

Will’s original work was performed using restricted PN

waveforms describing the inspiral stage of non-spinning coa-

lescing compact binaries, the phase of which was expanded to

1.5PN order. Recent work has elaborated on this by incorpo-

rating more accurate detector models, and by including more

physical effects such as effects rising from the spin angular

momentum of the compact objects, from the eccentricity of

the orbit, and from the inclusion of higher harmonics rising

from the contribution of the higher multipoles [14–20].

Since the PN formalism has enabled us to compute accurate

waveforms from the inspiral stage of the coalescence, these

analyses have focused on the information gained from the ob-

servation of the inspiral stage. The last few years have wit-

nessed a revolution in the numerical simulations of compact

binaries. In particular, numerical relativity was able to obtain

exact solutions for the “binary-black-hole problem” [21–23].

Concomitant with this great leap has been significant progress

in analytical relativity in the computation of high order PN

terms and the inclusion of various effects arising from spins,

higher harmonics etc. Combining the analytical and numer-

ical results, different ways of constructing inspiral-merger-

ring-down (IMR) waveforms have been proposed [24–26]. It

has been widely recognized that these IMR waveforms will

significantly improve the sensitivity and distance reach of the

searches for BBHs (see, e.g., [24, 27, 28]) as well as the accu-

racy of the parameter estimation (see, e.g., [29–31]).

In this paper, we estimate the bounds that can be placed on

the mass of graviton from the GW observations of BBHs us-

ing IMR templates. This is motivated by the previous observa-

tions (see e.g. [29]) that the IMR waveforms will significantly

improve the accuracy of the parameter estimation by breaking

the degeneracies between the different parameters describing

the signal, including the parameter describing the mass of the

graviton.

Due to the intrinsic randomness of the noise in the GW

data, the estimated parameters of the binary (including the

one parameter describing the mass of the graviton) will fluc-

tuate around their mean values. In the limit of high signal-

to-noise ratios (SNRs), the spread of the distribution of the

observed parameters— the accuracy of the parameter estima-

tion — is quantified by the inverse of the Fisher information

matrix [32, 33]. We employ the Fisher matrix formalism to es-

timate the expected bounds on the mass of the graviton using

the non-spinning limit of the IMR waveform model proposed

by Ref. [34]. This is a frequency-domain waveform family

describing the leading harmonic of the IMR waveforms from

BBHs. In this work, we focus on the statistical errors, and

neglect the possible systematic errors rising from not incor-

porating the effects from spins and higher harmonics in our

signal model.

The main findings of the paper are summarized below (Sec-

tion I A). The following sections present the details of the

analysis. Section II briefly reviews the effect of massive gravi-

ton on the dispersion of GWs, and summarizes the existing

bounds on the graviton mass. In Section III, we compute the

expected upper bounds that can be placed on the mass of the

graviton using the observations of IMR signals. In that sec-

tion, we review the signal and detector models used, provide

the details of the computation and present a discussion of the

results and the limitations of this work.

A. Summary of results

An executive summary of results is presented in Fig. 1

for the case of ground-based detectors Adv. LIGO and ET

as well as the space-borne detector LISA. For ground-based

detectors, the binary is assumed to be located optimally ori-

ented at 1 Gpc, and for LISA, the binary is located at 3

Gpc. For the case of Adv. LIGO (with low-frequency cutoff,

RWF

IMR

Keppel and Ajith (2010)
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Testing the tail effect
Gravitational wave tails Testing the presence of tails

Blanchet and Schaefer (1994) Blanchet and Sathyaprakash (1995)
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Testing general relativity with post-
Newtonian theory

Post-Newtonian expansion of orbital phase of a binary 
contains terms which all depend on the two masses of 
the binary

Monday, 7 March 2011
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Post-Newtonian expansion of orbital phase of 
a binary contains terms which all depend on 
the two masses of the binary

Different terms arise because of different 
physical effects
Measuring any two of these will fix the masses
Other parameters will have to consistent with 
the first two

Testing general relativity with 
post-Newtonian theory

Arun, Iyer, Qusailah, Sathyaprakash (2006a, b)
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Testing post-Newtonian theory
Arun, Iyer, Qusailah, Sathyaprakash (2006a, b)
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Confirming the presence of tail- and log-
terms with Advanced LIGO
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PN parameter accuracies with ET
1 Hz lower cutoff
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FIG. 4: Plots showing the variation of relative errors ∆ψT /ψT in the test parameters ψT=ψ3, ψ4, ψ5l, ψ6, ψ6l, ψ7 as a function of total mass M
for stellar mass black hole binaries (with component masses having mass ratio 0.1) at a luminosity distance of DL = 300 Mpc observed by

ET, using both RWF (left panels) and FWF (right panels) as waveform models. The choice of the source orientations is the same as quoted

in Fig. 3. The noise curve corresponds to the recent ET-B sensitivity curve. Top panels correspond to the lower frequency cutoff of 1 Hz.

By using FWF as the waveform model all ψk’s except ψ4 can be tested with fractional accuracy better than 2% in the mass range 11-44M!.

Bottom panels correspond to the lower frequency cutoff of 10 Hz. Using FWF, all ψk’s except ψ4 can be tested with fractional accuracy better
than 7% in the mass range 11-44M!.

termediate mass BBHs using ET. In addition to this we will

discuss some other key issues influencing the results such as

effects of PN systematics on the test, choice of parametriza-

tion and dependence of the test on angular parameters.

1. Stellar mass black-hole binaries

Fig. 4 plots the relative errors ∆ψT /ψT as a function of total
mass M of the binary at a distance of DL = 300 Mpc. We have

considered stellar mass BBHs of unequal masses and mass ra-

tio 0.1, with the total mass in the range 11-44M!. Fig. 4 also
shows two types of comparisons: (a) Full waveform (FWF) vs

Restricted waveform (RWF), (b) a lower frequency cutoff of

10 Hz vs 1 Hz. The top and bottom panels correspond to the

lower frequency cutoff of 1 Hz and 10 Hz, respectively, while

the left and right panels correspond to the RWF and FWF, re-

spectively. The source orientations are chosen arbitrarily to be

θ = φ = π/6, ψ = π/4, ι = π/3. It should be evident from the
plots that the best estimates of various test parameters are for

the combination using the FWF with a lower cutoff frequency

of 1 Hz. In this case, all ψ′
i
s except ψ4 can be measured with

Arun, Mishra, Iyer, Sathyaprakash (2010)
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FIG. 4: Plots showing the variation of relative errors ∆ψT /ψT in the test parameters ψT=ψ3, ψ4, ψ5l, ψ6, ψ6l, ψ7 as a function of total mass M
for stellar mass black hole binaries (with component masses having mass ratio 0.1) at a luminosity distance of DL = 300 Mpc observed by

ET, using both RWF (left panels) and FWF (right panels) as waveform models. The choice of the source orientations is the same as quoted

in Fig. 3. The noise curve corresponds to the recent ET-B sensitivity curve. Top panels correspond to the lower frequency cutoff of 1 Hz.

By using FWF as the waveform model all ψk’s except ψ4 can be tested with fractional accuracy better than 2% in the mass range 11-44M!.

Bottom panels correspond to the lower frequency cutoff of 10 Hz. Using FWF, all ψk’s except ψ4 can be tested with fractional accuracy better
than 7% in the mass range 11-44M!.

termediate mass BBHs using ET. In addition to this we will

discuss some other key issues influencing the results such as

effects of PN systematics on the test, choice of parametriza-

tion and dependence of the test on angular parameters.

1. Stellar mass black-hole binaries

Fig. 4 plots the relative errors ∆ψT /ψT as a function of total
mass M of the binary at a distance of DL = 300 Mpc. We have

considered stellar mass BBHs of unequal masses and mass ra-

tio 0.1, with the total mass in the range 11-44M!. Fig. 4 also
shows two types of comparisons: (a) Full waveform (FWF) vs

Restricted waveform (RWF), (b) a lower frequency cutoff of

10 Hz vs 1 Hz. The top and bottom panels correspond to the

lower frequency cutoff of 1 Hz and 10 Hz, respectively, while

the left and right panels correspond to the RWF and FWF, re-

spectively. The source orientations are chosen arbitrarily to be

θ = φ = π/6, ψ = π/4, ι = π/3. It should be evident from the
plots that the best estimates of various test parameters are for

the combination using the FWF with a lower cutoff frequency

of 1 Hz. In this case, all ψ′
i
s except ψ4 can be measured with

PN parameter accuracies with ET
10 Hz lower cutoff

Arun, Mishra, Iyer, Sathyaprakash (2010)
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Test as seen in the plane of component masses10
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FIG. 5: Plots showing the regions in the m1-m2 plane that corresponds to 1-σ uncertainties in ψ0, ψ2 and various test parameters, which happen
to be one of the six test parameters ψT = ψ3,ψ4,ψ5l,ψ6,ψ6l,ψ7 at one time, for a (2, 20) M! BBH at a luminosity distance of DL = 300 Mpc

observed by ET. In all the six plots shown above ψ0 and ψ2 are chosen as the fundamental parameters (from which we can measure the masses
of the two black holes). Each parameter corresponds to a given region in the m1-m2-plane and if GR is the correct theory of gravity then all

three parameters, ψ0, ψ2 and ψT should have a non-empty intersection in the m1-m2 plane. A smaller region leads to a stronger test. Notice that
all panels have the same scaling except the top middle panel in which Y axis has been scaled by a factor 10.

fractional accuracies better that 2% for the total mass in the

range 11-44M!. On the other hand when the lower cutoff is
10 Hz, with the FWF all ψ′

i
s except ψ4 can be measured with

fractional accuracies better than 7%. It is also evident from the

plots that as compared to other test parameters, ψ3 is the most
accurately measured parameter in all cases and best estimated

when the lower frequency cutoff is 1 Hz. On the other hand,

ψ4 is the worst measured parameter of all the test parameters.
However, we see the best improvement in its measurement

when going from the RWF to the FWF.

Fig. 5 shows the regions in the m1-m2 plane that corre-

sponds to 1-σ uncertainties in ψ0, ψ2 and various test pa-
rameters which in turn will be one of the six test parameters

ψT = ψ3,ψ4,ψ5l,ψ6,ψ6l,ψ7, one at a time, for a (2, 20) M!
BBH, at a luminosity distance of DL = 300 Mpc observed by

ET. It is evident from the plots corresponding to various tests

that each test parameter is consistent with corresponding fun-

damental pair (ψ0, ψ2).

2. Intermediate mass black hole binaries

Fig. 6 plots the relative errors ∆ψT/ψT as a function of the
total massM of the binary at a distance ofDL=3Gpc. We have

considered BBH of unequal masses with mass ratio 0.1. As in

Fig. 4, Fig. 6 also shows two types of comparisons: (a) Ef-

fect of the use of FWF on parameter estimation against RWF,

(b) Effect of lowering the cutoff frequency from 10 Hz to 1

Hz. As before, top and bottom panels correspond to the cut-

off frequency of 1 Hz and 10 Hz, respectively, and left and

right panels to RWF and FWF, respectively. The source ori-

entations are chosen arbitrarily to be θ = φ = π/6, ψ = π/4,
ι = π/3.

It is evident from the plots that the least relative errors in

various test parameters are for the combination that uses the

FWF and a lower cutoff of 1 Hz. Unlike the case of stel-

lar mass BBHs, in the case of intermediate mass BBHs only

two of the test parameters, ψ3 and ψ5l, can be measured with
fractional accuracies better that 10% for the total mass in the
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EoS w

Black hole seeds
Black hole demographics and their hierarchical growth 

Anisotropic cosmologies
Is there a signature of anisotropy in cosmological 
parameters such as the Hubble constant?

Primordial gravitational waves
Quantum fluctuations in the early Universe, stochastic BG

Production of GW during early Universe phase 
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Phase transitions, pre-heating, re-heating, etc.
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Cosmological parameters

Luminosity distance Vs. red shift depends on a 
number of cosmological parameters H0, ΩM, Ωb, 
ΩΛ, w, etc.

Advanced LIGO/Virgo/AIGO/LCGT network
Expected to detect many to 10’s of BNS and NS-BH signals

Einstein Telescope
Can detect 1000’s of compact binary mergers for which the 
source can be identified (e.g. GRB) and red-shift measured.

A fit to such observations can determine the 
cosmological parameters to good accuracy
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Compact Binaries are Standard Sirens

Amplitude of gravitational waves depends on
Chirp-mass=µ3/5M2/5

Gravitational wave observations can measure both 
Amplitude (this is the strain caused in our detector) 
Chirp-mass (because the chirp rate depends on the chirp mass)

Therefore, binary black hole inspirals are standard sirens
From the apparent luminosity (the strain) we can conclude the 
luminosity distance
A new model-independent calibration for cosmic distance 
ladder

However, GW observations alone cannot determine the 
red-shift to a source
Joint gravitational-wave and optical observations can 
facilitate a new cosmological tool
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ABSTRACT

Recent observations support the hypothesis that a large fraction of “short-hard” gamma-ray bursts
(SHBs) are associated with the inspiral and merger of compact binaries. Since gravitational-wave
(GW) measurements of well-localized inspiraling binaries can measure absolute source distances with
high accuracy, simultaneous observation of a binary’s GWs and SHB would allow us to directly and
independently determine both the binary’s luminosity distance and its redshift. Such a “standard
siren” (the GW analog of a standard candle) would provide an excellent probe of the relatively
nearby (z ! 0.3) universe’s expansion, independent of the cosmological distance ladder, and thus
complementing other standard candles. Previous work explored this idea using a simplified formalism
to study measurement by advanced GW detector networks, incorporating a high signal-to-noise ratio
limit to describe the probability distribution for measured parameters. In this paper we eliminate this
simplification, constructing distributions with a Markov Chain Monte Carlo technique. We assume
that each SHB observation gives both the source sky position and the time of coalescence, and we
take both binary neutron stars and black hole-neutron star coalescences as plausible SHB progenitors.
We examine how well parameters (particularly the luminosity distance) can be measured from GW
observatations of these sources by a range of ground-based detector networks. We find that earlier
estimates overstate how well distances can be measured, even at fairly large signal-to-noise ratio.
The fundamental limitation to determining distance to these sources proves to be the gravitational
waveform’s degeneracy between luminosity distance and source inclination. Despite this, we find that
excellent results can be achieved by measuring a large number of coalescing binaries, especially if
the worldwide network consists of many widely separated detectors. Advanced GW detectors will be
able to determine the absolute luminosity distance to an accuracy of 10–30% for NS-NS and NS-BH
binaries out to 600 and 1400 Mpc, respectively.
Subject headings: cosmology: distance scale—cosmology: theory—gamma rays: bursts—gravitational

waves

1. INTRODUCTION

1.1. Overview

There are presently two operational multikilometer in-
terferometric gravitational-wave (GW) detectors: LIGO4

and Virgo5. They are sensitive to the GWs produced
by the coalescence of two neutron stars to a distance of
roughly 30 Mpc, and to the coalescence of a neutron star
with a 10M! black hole to roughly 60 Mpc. Over the
next several years these detectors will undergo upgrades
which are expected to extend their range by a factor
∼ 10. At these advanced sensitivity levels, most esti-
mates suggest that detectors should measure at least a
few, and possibly a few dozen, binary coalescence events
every year (e.g., Kopparapu et al. 2008).

It has long been argued that neutron star-neutron star
(NS-NS) and neutron star-black hole (NS-BH) merg-
ers are likely to be accompanied by a gamma-ray burst
(Eichler et al. 1989). Recent evidence supports the hy-
pothesis that many short-hard gamma-ray bursts (SHBs)
are indeed associated with such mergers (Fox et al. 2005,
Nakar et al. 2006, Berger et al. 2007, Perley et al. 2008).

1 CITA, University of Toronto, 60 St. George St., Toronto, ON,
M5S 3H8, Canada

2 Department of Physics and MIT Kavli Institute, 77 Mas-
sachusetts Avenue, Cambridge, MA 02139

3 Theoretical Division, Los Alamos National Laboratory, Los
Alamos, NM 87545

4 http://www.ligo.caltech.edu
5 http://www.virgo.infn.it

This suggests the exciting possibility that it may be pos-
sible to simultaneously measure a binary coalescence in
gamma rays (and associated afterglow emission) and in
GWs. The combined electromagnetic and gravitational
view of these objects is likely to teach us substantially
more than what we learn from either data channel alone.
Because GWs track a system’s global mass and energy
dynamics, measuring GWs from a coalescing binary al-
lows us to determine with exquisite accuracy “intrinsic”
binary properties, such as the masses and spins of its
members. As we describe in the following subsection,
GWs can also determine a system’s “extrinsic” prop-
erties, such as location on the sky and distance to the
source. In particular, the amplitude of a binary’s GWs
directly encodes its luminosity distance. Direct measure-
ment of a coalescing binary could thus be used as a cos-
mic distance measure: Binary inspiral would be a “stan-
dard siren” (the GW equivalent of a standard candle,
so-called due to the sound-like nature of GWs) whose
calibration depends only on the validity of general rela-
tivity (Dalal et al. 2006).

Unfortunately, GWs alone do not measure extrinsic
parameters as accurately as the intrinsic ones. As we de-
scribe in more detail in the following section, in general
a GW observation of a binary measures a complicated
combination of the distance to the binary, the binary’s
position on the sky, and the binary’s orientation, with
overall fractional accuracy ∼ 1/signal-to-noise. As the
distance is degenerate with the angular parameters, us-
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AIGO or LIGO-Virgo-LCGT network, we expect 3/4 of
this rate. If SHB collimation can be assumed, the rate
is further augmented by a factor of 1.12. At this rate,
we find that one year of observation should be enough
to measure H0 to an accuracy of ∼ 1% if SHBs are dom-
inated by beamed NS-BH binaries using the “full” net-
work of LIGO, Virgo, AIGO, and LCGT—admittedly,
our most optimistic scenario. A general trend we see is
a network of five detectors (as opposed to our baseline
LIGO-Virgo network of three detectors) increases mea-
surement accuracy in H0 by a factor of one and a half;
assuming that the SHB progenitor is a NS-BH binary
improves measurement accuracies by a factor of four or
greater. Errors in H0 are seen to improve by a factor of
at least two when we assume SHB collimation.

Aside from exploring the cosmological consequences of
these results, several other issues merit careful future
analysis. One general result we found is the importance
that prior distributions have on our final posterior PDF.
We plan to examine this in some detail, checking which
parameters particularly influence our final result, and as-
certaining what uncertainties can be ascribed to our in-
ability to set priors on these parameters. It may be pos-
sible to mitigate the influence of the DL–cos ι degeneracy
by setting a distance prior that requires our inferred dis-
tance to be consistent with the SHB’s observed redshift.

Another important issue is that of systematic errors
in binary modeling. We have used the second-post-
Newtonian description of a binary’s GWs in our analy-
sis; and, we have ignored all but the leading quadrupole
harmonic of the waves (the so-called “restricted” post-
Newtonian waveform). Our suspicion is that a more
complete post-Newtonian description of the phase would
have little impact on our results, since such effects are
not likely to have an impact on the all-important DL–
cos ι degeneracy. In principle, including additional (non-
quadrupole) harmonics could have an impact on this de-
generacy, since these other harmonics encode different
information about the inclination angle ι. In practice,
we expect that they won’t have much effect on GW-SHB
measurements, since these harmonics are measured with
very low SNR (the strongest harmonic is roughly a fac-
tor of 10 smaller in amplitude than the quadrupole). It
shouldn’t be too difficult to test this, however; given how
important this degeneracy has proven to be, it could be
a worthwhile exercise.

As discussed previously, we confine our analysis to the
inspiral part of the waveform. Inspiral waves are ter-
minated at the presumed innermost stable circular or-
bit frequency, fISCO = (63/2πMz). For NS-NS binaries,
fISCO " 1600 Hz. At this frequency, detectors have fairly
poor sensitivity, and we are thus confident that termi-
nating the waves has little impact on our results for NS-
NS systems. However, for our assumed NS-BH binaries,
fISCO " 400 Hz. Detectors have rather good sensitivity
in this band, so it may be quite important to improve
our model for the waves’ termination in this case.

Perhaps the most important follow-up would be to in-
clude the impact of spin. Although the impact of neutron
star spin is likely to be small, it may not be negligible;
and, for NS-BH systems, the impact of the black hole’s
spin could be significant. Spin induces precessions in
the binary which can make the orientation of the orbit,
L̂, dynamical. That in turn makes the observed incli-
nation dynamical, which can break the DL–cos ι degen-
eracy. Van der Sluys et al. (2008) have already shown
that spin precession physics vastly improves the ability
of ground-based detectors to determine a source’s posi-
tion on the sky; we are confident that a similar analysis
which assumes sky position will find that measurements
of source distance and inclination can likewise be im-
proved.
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Désert, Éanna Flanagan, Zhiqi Huang, Ryan Lang,
Antony Lewis, Nergis Mavalvala, Szabolcs Márka, Phil
Marshall, Cole Miller, Peng Oh, Ed Porter, Alexander
Shirokov, and Pascal Vaudrevange. We are grateful to
Neil Cornish in particular for early guidance on the de-
velopment of our MCMC code. We also are grateful
for the hospitality of the Kavli Institute for Theoretical
Physics at UC Santa Barbara, and to the Aspen Center
for Physics, where portions of the work described here
were formulated. Computations were performed using
the Sunnyvale computing cluster at the Canadian Insti-
tute for Theoretical Astrophysics, which is funded by
the Canadian Foundation for Innovation. SAH is sup-
ported by NSF Grant PHY-0449884, and also gratefully
acknowledges the support of the MIT Class of 1956 Ca-
reer Development Fund.

REFERENCES

Althouse, W., Jones, L., & Lazzerini, A. 1998, Technical Report
No. LIGO-T980044-08

Anderson, W. G., Brady, P. R., Creighton, J. D., & Flanagan, É. É.
2001, Phys. Rev. D, 63, 042003

Berger, E., Fox, D. B., Price, P. A., Nakar, E., Gal-Yam, A., Holz,
D. E., Schmidt, B. P., Cucchiara, A., Cenko, S. B., Kulkarni,
S. R., Soderberg, A. M., Frail, D. A., Penprase, B. E., Rau, A.,
Ofek, E., Burnell, S. J. B., Cameron, P. B., Cowie, L. L., Dopita,
M. A., Hook, I., Peterson, B. A., Podsiadlowski, P., Roth, K. C.,
Rutledge, R. E., Sheppard, S. S., & Songaila, A. 2007, ApJ, 664,
1000

Blair, D. G., Barriga, P., Brooks, A. F., Charlton, P., Coward, D.,
Dumas, J.-C., Fan, Y., Galloway, D., Gras, S., Hosken, D. J.,
Howell, E., Hughes, S., Ju, L., McClelland, D. E., Melatos, A.,
Miao, H., Munch, J., Scott, S. M., Slagmolen, B. J. J., Veitch,
P. J., Wen, L., Webb, J. K., Wolley, A., Yan, Z., & Zhao, C.
2008, Journal of Physics Conference Series, 122, 012001

Blanchet, L. 2006, Living Reviews in Relativity, 9, 4

Blanchet, L., Damour, T., Esposito-Farèse, G., & Iyer, B. R. 2004,
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Figure 3. Scatter plot of the retrieved values for (!", w), with 1-σ , 2-σ and 3-σ contours, in the
case where weak lensing is not corrected.

In addition to H0 if !" is also known (or, equivalently, if !M + !" = 1), then one can
estimate the pair (!M, w) more accurately, with 1-σ errors in !M and w of 9.4% and 7.6%
(with weak lensing) and 8.1% and 6.6% (with lensing errors corrected). Finally, if w is the
only parameter unknown, it can be measured to an even greater accuracy with 1-σ errors of
1.4% (with weak lensing) and 1.1% (with lensing errors corrected)4.

3.3. Effect of unknown orientation and polarization

In the previous section our study neglected the effect of different inclinations of the orbit to
the lineof sight. Varying the inclination has two distinct effects. On the one hand, as noted
in [7], due to the strong correlation between the luminosity distance and the inclination, the
estimation of the luminosity distance could get corrupted. On the other hand, binaries that
are not face-on are, in general, elliptically polarized and have a non-zero polarization angle.
Since the polarization angle is correlated with the luminosity distance, there could be further
degradation in the estimation of the luminosity distance.

In this section we relax the condition that the inclination of the orbit is precisely known.
However, we will restrict the inclination of the binary’s angular momentum with the line of
sight to be within 20◦. We will also assume that the radiation is described by an arbitrary
polarization angle. Since the sky position is still assumed to be known, this gives us a 7 × 7
covariance matrix with a revised estimate for the error in the luminosity distance. As before, we
construct catalogues of binary coalescence events but with the luminosity distance now drawn
from a Gaussian distribution with revised widths. We fit each catalogue to a cosmological
model and then repeat the exercise 5190 times to estimate the accuracy with which the various
cosmological parameters can be measured.

As expected, the parameter measurements get worse if we assume two or more parameters
to be unknown. For instance, errors in the estimation of !M, !" and w are, respectively,

4 At this point we note that in contemporary cosmology, w is determined mainly through SNIa observations using
CMB data as prior to ‘fix’ the other parameters. The CMB constraint on w is extremely weak. If one were to use
CMB results as a prior for GW measurements, one would obtain an independent measurement of w. We stress once
again that, unlike supernovae, GW standard sirens do not need any external calibration. A detailed discussion will be
presented in forthcoming work [23].

7
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Gravity's Standard Sirens 

Astrophysics
Unveiling progenitors of short-hard GRBs

Short-hard GRBs believed to be merging NS-NS or NS-BH

Understanding Supernovae
Astrophysics of gravitational collapse and supernova?

Evolutionary paths of compact binaries
Complex astrophysics drives the evolution

Finding why pulsars glitch and magnetars flare
What causes sudden excursions in pulsar spin frequencies?
What is behind ultra high-energy transients in magnetars?

Ellipticity of neutron stars
Mountains of what size can be supported on neutron stars?

NS spin frequencies in LMXBs
Why are spin frequencies of neutron stars in low-mass X-ray 
binaries bounded, CFS instability and r-modes?

Are massive objects at galactic nuclei really black holes?
Monday, 7 March 2011



Astrophysics: nature of 
central objects at galactic 
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Black hole quasi-normal modes are damped sinusoids with 
characteristic frequencies and decay times

In general relativity frequencies flmn and decay times tlmn all 
depend only on the mass M and spin q of the black hole

Measuring two or modes unambiguously, would severely 
constrain general relativity

If modes depend on other parameters (e.g., the structure 
of the central object), then test of the consistency between 
different mode frequencies and damping times would fail

Black Hole Spectroscopy: Test of GR and 
Test Black Hole Signature

38

3

In the case of binaries with spinning black holes, the
relative amplitudes of the various modes will also depend
on the magnitude and direction of the spin. A detailed
study of the dependence of the relative amplitudes of var-
ious modes on the initial spin configurations and mass
ratio of the progenitor binary is necessary to assess how
accurately one might be able to use inspiral signals to
measure a progenitor binary’s parameters. For this a
more exhaustive set of simulations covering the full pa-
rameter space of binary black holes is required.

Let us conclude this section by noting that using the
expression for the two polarizations in Eq. (8) the detec-
tor response given in Eq. (5) can be written as:

hA(t) =
�

�,m>0

B�m(M, j, q)
DL

e−t/τ�m sin (ω�mt + γ�m) ,

(11)
where B�m (γ�m are a combination of the amplitudes A�m

(respectively, phases φ�m), antenna pattern functions FA
+

and FA
× and the inclination angle ι. The above form of

the response is more helpful in understanding which, or
which combination, of the parameters can be measured
and how many detectors are required in solving the in-
verse problem, namely to fully reconstruct the incident
gravitational wave and the parameters of the source that
emited the radiation. It is instructive to write them in
term We shall use the above form of the waveform to
compute the covariance matrix.

III. AMPLITUDES OF MODES EXCITED
DURING THE MERGER OF A BLACK HOLE

BINARY

IV. WHAT CAN BE MEASURED WITH A
NETWORK OF TWO OR MORE DETECTORS?

Let us begin by counting the number of parame-
ters that characterize a ringdown signal with, as in
Eq.(8), two modes. The unknowns to be determined are
(M, j, q, ι, ) As mentioned before, we shall consider only
ringdown signals followed by the inspiral phase of a coa-
lescing binary black hole. A network of of three or more
ground-based detectors, in the case of stellar mass black
holes, and LISA, in the case of supermassive black holes,
should determine the location of the source on the sky
and its luminosity distance. We shall, therefore, assume
these quantities to be known. In reality, these quantities
will be subject to measurement errors which have to be
taken into account but at worst the inspiral phase should
provide the prior probability distribution on these param-
eters which can help further analysis with the ringdown
modes.

The strain measured by each detector by matched fil-
tering the signal against pre-computed waveforms will
determine the following quantities: The masses

[1] O. Dreyer, B. Kelly, B. Krishnan, L. S. Finn, D. Gar-

rison, and R. Lopez-Aleman, Class. Quantum Grav. 21,

787 (2004), gr-qc/0309007.

[2] E. Berti, V. Cardoso, and C. M. Will, Phys. Rev. D 73,

064030 (2006), gr-qc/0512160.

[3] E. Berti, J. Cardoso, V. Cardoso, and M. Cavagliá, Phys.

Rev. D76, 104044 (2007), gr-qc/0501068.
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Emitted energy and relative amplitudes 
of different quasi-normal modes

39

An important astrophysical question is whether 

astronomical black hole candidates are really black 

holes. It has long been proposed that quasi-normal 

modes can provide the answer. Here is a practical 

implementation of how one might confirm if our source is 

really a black hole. 

From each mode frequency and damping time one can 

infer the black hole mass and spin angular momentum. 

The inferred values of mass and spin from various 

modes should agree with each other if the object is truly 

a black hole. Figure below shows the accuracy with 

which the mass and spin can be extracted from different 

modes. Note that the mode frequencies themselves do 

not provide a smoking gun evidence for black holes. The 

damping times, on the other hand, can discriminate 

between black holes and other exotic objects. 

As can be seen from Table 1, the relative amplitudes of 

the modes depend on the mass ratio. The following is a 

good fit to the relative amplitudes which includes only 

the (3,3) modes taken from Ref. [2]: 

As is well known, larger the mass ratio greater is the 

amplitude of the higher order modes. Therefore, it 

should be possible to measure the mass ratio of the 

progenitor binary by measuring the relative amplitudes 

of the modes. Using the above model for the waveform, 

we find the relative error in the various parameters as a 

function of the mass ratio of the system as below. In this 

case the progenitor black hole binary was at z=0.45 and 

had a total mass of 5 x 106 M
!
. Note that the mass ratio 

can be determined to 1% even for large mass ratios. 

More with Quasi-Normal Modes 
Extracting binary source parameters and testing GR 

Ioannis Kamaretsos, Mark Hannam, Sascha Husa, Bangalore Sathyaprakash 

Relative amplitudes of quasi-modes 

from numerical relativity 
Quasi-normal modes we study come from the end state 

of binary black hole evolution. Numerical simulations of 

the coalescence of binary black holes were performed 

using the BAM code, which implements the moving-

puncture method. We ran five simulations of non-

spinning binary black holes with five different mass 

ratios.  

Table 1 shows the relative amplitudes of the different 

modes. Also listed are the final spin (j) of the hole and 

the amount of energy radiated. Our results are in broad 

agreement with that of Ref. [2].  

The ringdown signal consists of a superposition of 

quasi-normal modes (QNM), each a damped sinusoid 

with a characteristic frequency flmn(M,j) and damping 

time !lmn(M,j). The following plots show the signal-to-

noise ratio (SNR) of different QNMs in LISA for a source 

of total mass 107 M
!
 at a red-shift of z = 0.45.  

Plots below show relative errors in frequencies 

and damping times of the various modes for the 

same source as above. Mode frequencies and 

damping times depend on the mass M and spin j 

of the hole, which can both be inferred accurately. 

Table 1: For different mass ratios (q=1, 2, 3, 4, 11), we show the 

final spin of the black hole, percent of energy in the radiation, 

amplitude of (2,1), (3,3), (4,4) modes relative to (2,2) mode. 

Measuring black hole mass and spin 

Are they really black holes?  

LISA SNRs and measurement accuracy 

of amplitudes of different modes 
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q j 
% total 

energy 
A21/A22 A33/A22 A44/A22 

1 0.69 4.9 0.04 0.10 0.05 

2 0.62 3.8 0.05 0.13 0.06 

3 0.54 2.8 0.07 0.21 0.08 

4 0.47 2.2 0.08 0.25 0.09 

11 0.25 0.7 0.14 0.31 0.14 

Measuring mass ratio of progenitor 

binary from quasi-normal modes 

[1] Bruegmann et al, Phys. Rev. D 77:024027 (2008). 

[2] Berti, Cardoso, Cardoso, Cavaglia, Phys. Rev. D 76:104044 (2007). 
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An important astrophysical question is whether 

astronomical black hole candidates are really black 

holes. It has long been proposed that quasi-normal 

modes can provide the answer. Here is a practical 

implementation of how one might confirm if our source is 

really a black hole. 

From each mode frequency and damping time one can 

infer the black hole mass and spin angular momentum. 

The inferred values of mass and spin from various 

modes should agree with each other if the object is truly 

a black hole. Figure below shows the accuracy with 

which the mass and spin can be extracted from different 

modes. Note that the mode frequencies themselves do 

not provide a smoking gun evidence for black holes. The 

damping times, on the other hand, can discriminate 

between black holes and other exotic objects. 

As can be seen from Table 1, the relative amplitudes of 

the modes depend on the mass ratio. The following is a 

good fit to the relative amplitudes which includes only 

the (3,3) modes taken from Ref. [2]: 

As is well known, larger the mass ratio greater is the 

amplitude of the higher order modes. Therefore, it 

should be possible to measure the mass ratio of the 

progenitor binary by measuring the relative amplitudes 

of the modes. Using the above model for the waveform, 

we find the relative error in the various parameters as a 

function of the mass ratio of the system as below. In this 

case the progenitor black hole binary was at z=0.45 and 

had a total mass of 5 x 106 M
!
. Note that the mass ratio 

can be determined to 1% even for large mass ratios. 

More with Quasi-Normal Modes 
Extracting binary source parameters and testing GR 

Ioannis Kamaretsos, Mark Hannam, Sascha Husa, Bangalore Sathyaprakash 

Relative amplitudes of quasi-modes 

from numerical relativity 
Quasi-normal modes we study come from the end state 

of binary black hole evolution. Numerical simulations of 

the coalescence of binary black holes were performed 

using the BAM code, which implements the moving-

puncture method. We ran five simulations of non-

spinning binary black holes with five different mass 

ratios.  

Table 1 shows the relative amplitudes of the different 

modes. Also listed are the final spin (j) of the hole and 

the amount of energy radiated. Our results are in broad 

agreement with that of Ref. [2].  

The ringdown signal consists of a superposition of 

quasi-normal modes (QNM), each a damped sinusoid 

with a characteristic frequency flmn(M,j) and damping 

time !lmn(M,j). The following plots show the signal-to-

noise ratio (SNR) of different QNMs in LISA for a source 

of total mass 107 M
!
 at a red-shift of z = 0.45.  

Plots below show relative errors in frequencies 

and damping times of the various modes for the 

same source as above. Mode frequencies and 

damping times depend on the mass M and spin j 

of the hole, which can both be inferred accurately. 

Table 1: For different mass ratios (q=1, 2, 3, 4, 11), we show the 

final spin of the black hole, percent of energy in the radiation, 

amplitude of (2,1), (3,3), (4,4) modes relative to (2,2) mode. 

Measuring black hole mass and spin 

Are they really black holes?  

LISA SNRs and measurement accuracy 

of amplitudes of different modes 
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q j 
% total 

energy 
A21/A22 A33/A22 A44/A22 

1 0.69 4.9 0.04 0.10 0.05 

2 0.62 3.8 0.05 0.13 0.06 

3 0.54 2.8 0.07 0.21 0.08 

4 0.47 2.2 0.08 0.25 0.09 

11 0.25 0.7 0.14 0.31 0.14 

Measuring mass ratio of progenitor 

binary from quasi-normal modes 

[1] Bruegmann et al, Phys. Rev. D 77:024027 (2008). 

[2] Berti, Cardoso, Cardoso, Cavaglia, Phys. Rev. D 76:104044 (2007). 
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LISA SNRs for different QNMs
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How can QNMs help test GR?
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Black hole no hair theorems don’t apply to 
deformed black holes

From the ringdown signals it should in principle be 
possible to infer the nature of the perturber

In the case of binary mergers it should be possible 
to measure the masses and spins of the progenitor 
binary from the quasi-normal modes of the final 
black hole
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Conclusions
Gravitational-wave observations offer new tests of general 
relativity in the dissipative strongly non-linear regime

Advanced LIGO can already test tails of gravitational waves and the 
presence of the log-term in the PN expansion

Einstein Telescope will measure all known PN coefficients (except one at 
2PN order) to a good accuracy

A new “powerful” tool for cosmology

Measurement of cosmological parameters avoiding the cosmic distance 
ladder

Black hole quasi-normal modes will be very useful in testing GR

Consistency between different mode frequencies and damping times can 
be used to constrain GR

Ringdown modes can be used to measure component masses of 
progenitor binary and test predictions of numerical relativity
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