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Expected ET Sensitivity
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What will ET observe and
what can it tell?

-2 ET will observe radiation arising from

-* black hole collisions when the Universe was still in its infancy
assembling the first galaxies

-2 neutron star collisions when star formation in the Universe was
at its peak

-* formation of black holes and neutron stars in supernovae and
collapsars in the local neighbourhood

-® stochastic backgrounds of cosmological and astrophysical origin

-2 ET will provide new insights into

-* the secret births and lives of black holes and neutron stars,
their demographics, populations and their masses and spins

* dark energy and its variation with redshift
‘® equation of state of matter at supra-nuclear densities
* early history of the Universe’s evolution
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Compact binaries for fundamental
physics, cosmology and astrophysics

-2 Black holes and neutron stars are the most compact objects

-2~ The potential energy of a test particle is equal to its rest mass energy
GmM 2

]{ ~ MC
-2 Being the most compact objects, they are also the most
luminous sources of gravitational radiation

‘2~ The luminosity of a neutron star binary increases a billion times in the
course of its evolution through a ET’s sensitivity band

2= The GW luminosity of a binary black hole outshines, during merger,
the EM luminosity of all the stars in the Universe

-2~ Compact binaries are self-calibrating standard sirens

‘2= GWV observations measure both the apparent luminosity (strain) and
absolute luminosity (chirp rate) of a source
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Numerical Simulation of Merging Black Hole Binaries

Caltech-Cornell Simulation
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ET Distance Reach for

Compact Binary Mergers
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Schutz 86

Gravity’s Standard Sirens

-2 To measure the luminosity distance to a source we
need its apparent and absolute luminosities

-2~ Gravitational wave observations of compact binary
inspirals can measure both

-2~ Apparent luminosity: this is GWV strain in our detector

-2~ Absolute luminosity: this is the rate at which GW frequency
changes with time

-2~ Therefore, binary black hole inspirals are self-
calibrating standard sirens

-2 However, GW observations alone cannot determine
the red-shift to a source

-2~ Joint gravitational-wave and optical observations can
facilitate a new cosmological tool
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Fundamental Physics

Properties of gravitational waves
-2~ Testing GR beyond the quadrupole formula

* Binary pulsars consistent with quadrupole formula; they don’t measure properties of GW

‘2~ How many polarizations are there!?
® In Einstein’s theory only two polarizations; a scalar-tensor theory could have six

-2~ Do gravitational waves travel at the speed of light?
® There are strong motivations from string theory to consider massive gravitons
® Binary pulsars constrain the speed to few parts in a thousand
» GW observations can constrain to | partin 10'8

EoS of dark energy

-2 Black hole binaries are standard candles/sirens
EoS of supra-nuclear matter
-2 Signature of EoS in GW emitted when neutron stars merge

Black hole no-hair theorem and cosmic censorship
‘2~ Are BH (candidates) of nature BH of general relativity?

-2~ An independent constraint/measurement of neutrino mass

-2~ Delay in the arrival times of neutrinos and gravitational waves
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Do gravitational waves travel at the
speed of light?

-2~ Coincident observation of a supermassive black hole binary
and the associated gravitational radiation can be used to
constrain the speed of gravitational waves:

-2 If At is the time difference in the arrival times of GW and EM
radiation and D is the distance to the source then the

fractional difference in the speeds is

Av At 10-14 At D
¢ Dje™ 1sec / \ 1Mpc

-2 It is important to study what the EM signatures of massive

BBH mergers are

-2~ Can be used to set limits on the mass of the graviton slightly

better than the current limits.

Will (1994, 98)
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Bound on graviton Compton wave
length as a function of total mass

-2 The Compton wavelength
of a particle is determined
by its mass

‘2 The larger the mass
smaller will be its
wavelength

-2 Limit on the Compton
wavelength of graviton
based on ET observations
will be two orders-of-
magnitude better than
solar system limits
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Testing Brans-Dicke Theory - An
Alternative to Einstein’s gravity

2 Brans-Dicke

theory has a
parameter denoted
wep In Einstein’s
gravity this
parameter takes
the value infinity.

2 ET can constrain

this value by an
order of magnitude
more than current
limits

" o, ,

o,

Bound on Wgp
—
=
T

— - ET-B
— ET-D
aLIGO:(1.4+5) Mo at 300 Mpc
IIIIIIIIIIIIIIII | 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1
10 15 20
BH Mass (MO)

Thursday, 19 May 2011



Black Hole No-Hair Theorem

-2 Deformed black holes are unstable; they emit energy in

their deformation as gravitational waves

‘¢ Superposition of damped waves with many different frequencies
and decay times

> |n Einstein’s theory, frequencies and decay times all depend only
on the mass M and spin j of the black hole
‘2 Measuring two or modes would constrain Einstein’s
theory or provide a smoking gun evidence of black

holes

-* If modes depend on other parameters (e.g., the structure of the
central object), then test of the consistency between different
mode frequencies and damping times would fail

-2 The amplitude of the modes cary additional
information about what caused the deformity
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Measuring BH parameters
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BBH Signals as Testbeds for GR

-2~ Gravity gets ultra-strong during a BBH merger compared to
any observations in the solar system or in binary pulsars

- In the solar system: p/c? ~ 10

-® In a radio binary pulsar it is still very small: d/c? ~ 10
-» Near a black hole ¢/c? ~ 1

-2- Merging binary black holes are the best systems for
strong-field tests of GR

-2 Dissipative predictions of gravity are not even tested at the
|PN level

-# In binary black holes even (v/c)’ PN terms will not be
adequate for high-SNR (~100) events
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Testing GR by observing non-linear effects

-2~ Binary inspiral waveform

depends on many post-
Newtonian coefficients
& ¥o, ¥, ¥, .

2= They correspond to different
physical effects, e.g. GWV tails

‘2" In the case of non-spinning

binariesYo, ¥», ¥, . depend
on just the two masses mj
and m»

-2~ By assuming they are all

independent one can check
to see if GR is the correct
theory

Gravitational wave tails

Blanchet and Schaefer (1994)
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What will we see if GR is not the correct theory!?
Effect of changing the coefficients 1, and ., by 5% on the test.
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http://xxx.soton.ac.uk/abs/1005.0304
http://xxx.soton.ac.uk/abs/1005.0304

How well can ET measure non-linear effects?

Model=RWF; q_=0.1; D, =300Mpc; ET-B; F,_, =1Hz;

0.22 g 0.22

m,x10' (M

Mishra, et al (2010)

o
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Cosmology

2= Cosmography

-2~ Build the cosmic distance ladder, strengthen existing calibrations at high z
>~ Measure the Hubble parameter, dark matter and dark energy densities, dark
energy EoS w, variation of w with z

> Black hole seeds

2 Black hole seeds could be intermediate mass black holes
> Might explore hierarchical growth of central engines of black holes

-2~ Dipole anisotropy in the Hubble parameter

>~ The Hubble parameter will be “slightly” different in different directions due to
the local flow of our galaxy

-2~ Anisotropic cosmologies

»In an anisotropic Universe the distribution of H on the sky should show
residual quadrupole and higher-order anisotropies

-2~ Primordial gravitational waves

2 Quantum fluctuations in the early Universe could produce a stochastic b/g

‘2~ Production of GWV during early Universe phase transitions

> Phase transitions, pre-heating, re-heating, etc., could produce detectable
stochastic GW
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Hubble Constant from Advanced Detectors

EXPLORING SHORT GAMMA-RAY BURSTS AS GRAVITATIONAL-WAVE STANDARD SIRENS
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Draft version April 7, 2009
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ET: Measuring Dark Energy and Dark Matter

‘2= ET will observe 100’s of binary neutron stars and GRB associations each year
-2~ GRBs could give the host location and red-shift, GW observation provides D.

Class. Quantum Grav. 27 (2010) 215006 B S Sathyaprakash et al
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Figure 3. Scatter plot of the retrieved values for (25, w), with 1-0, 2-0 and 3-0 contours, in the
case where weak lensing is not corrected.
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Measuring w and its variation with z
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Hierarchical Growth of Black Holes
in Galactic Nuclei

Slide from Sesana

lookback time (Gyr)
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-2 |nitially small black holes may grow by hierarchical merger
» ET could observe seed black holes if they are of order 1000 solar mass
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Observing Intermediate-mass Black Hole
Binaries

-2 Ultra-luminous X-ray sources might be hosting black holes of mass one
thousand solar masses

‘2~ 100 solar mass black holes could be seeds of galaxy formation

>~ ET could observe black hole populations at different red-shifts and
resolve questions about black hole demographics
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Today : 14 billion years . ;

eoner\ . ® A Slide from Shellard
Acceleration N\—————2 11 billion years ——~——— q b $ h =

Dark energy do 0Tt S : t

Solar system form rlef IS O ry

Star formation peak

Galaxy formationera\§y = | . P — . ' Of the Universe

Earliest visible galaxies 700 mil,lion years

Qi

CMB f < 3 x 10~ 17hHz probes 300, 000yrs < t. < 14Gyrs

Matter domination
Onset of gravitational collapse

Nucleosynthesis
Light elements created - D, He, Ui

Nuclear fusion begins
Pulsars f ~ 10~®Hz probe t, ~ 10~%s (T' ~ 50MeV)

Quark—hadron transition
Protons and neutrons formed

Electroweak transition = A T s (—
Electromagnetic and weak nudear |
forces first differentiate
Supersymmetry breaking

LISA f ~ 10~3Hz probes t, ~ 10~ s (T ~ 10TeV)
ET f~ 10 Hz probes ¢,~ 1020 s (T~ 10% GeV)
LIGO f ~ 100 Hz probes t. ~ 10~ s (T ~ 10%GeV)

Axions etc.?

Grand unification transition -
Blecroweak and strong nudear '
forces differentiate

Inflation

Quantum gravity wall
Spacetime description breaks down
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Primordial Backgrounds
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Astrophysics

> Unveiling progenitors of short-hard GRBs

» Understand the demographics and different classes of short-hard GRBs

>~ Understanding Supernovae

> Astrophysics of gravitational collapse and accompanying supernova!?

- Evolutionary paths of compact binaries

> Evolution of compact binaries involves complex astrophysics
- Initial mass function, stellar winds, kicks from supernova, common envelope phase

> Finding why pulsars glitch and magnetars flare

> What causes sudden excursions in pulsar spin frequencies and what is behind
ultra high-energy transients of EM radiation in magnetars
> Could reveal the composition and structure of neutron star cores

-2 Ellipticity of neutron stars as small as | part in a billion (10pm)

>~ Mountains of what size can be supported on neutron stars?

> NS spin frequencies in LMXBs

> Why are spin frequencies of neutron stars in low-mass X-ray binaries
bounded?

2 Onset/evolution of relativistic instabilities

> CFS instability and r-modes
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Mountains on Neutron Stars

2= ET will check if neutron stars (10 km in radius) have
mountains that are smaller than |0 micro meters

-2~ This could constrain models about their crustal strengths

Search for known neutron stars T =5 yrs
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Supernovae

Standard candles of astronomy

- Our knowledge of the expansion rate of the Universe at redshift of

z=1 comes from SNe

Produce dust and affect evolution of galaxies

> Heavy elements are only produced in SNe

They are precursors to formation of neutron stars and
black holes

>~ The most compact objects in the Universe

SNe cores are laboratories of complex physical
phenomena

> Most branches of physics and astrophysics needed in modelling

-» General relativity, nuclear physics, relativistic magnetohydrodynamics, turbulence,
neutrino viscosity and transport, ...

Unsolved problem: what is the mechanism of shock revival?
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Core Collapse SNe

SN Explosion

\ / /VO
\\\\ //// SbOC‘,(,
— v,
-  Protoneutron Star, Q/ )
o\aps Stalled Shock, BH formation
Accretion "Collapsar"
Evolved Massive Star
-2 Energy reservoir -2~ Time frame for explosion
& few x 10°3 erg - 300 - 1500 ms after bounce
-2~ Explosion energy -2~ Formation of black hole
-+ 10°! erg -» At baryonic mass > 1.8-2.5 M
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Accretion Induced Collapse

Accretion [see, e.g., Dessart et al. ‘06, ‘07,

Abdikamalov et al. ‘09, Metzger et al. ‘09]

SN Explosion

e Neutrino-driven or

// \\\ Magne_to-RotationaI
Accretion-Induced ,’/ \\Epr05|on
Collapse ' }
/Erotoneutron Star,
Shock
White Dwarf
(evolved low-mass star)
-» Collapse of accreting, probably * Might not be seen in optical
rotating White Dwarfs -2~ Potential birth site of
> Neutrino-driven or magneto- magnetars - highly (|0|5- 10’6
rotational explosion G) magnetized neutron stars
-2~ Explosion probably weak, sub-

luminous
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SNe Rate in ET

> ET sensitive to SNe up to 5 Mpc

2 Could observe one SN once in few years

2 Coincident observation with
neutrino detectors

* Might be allow measurement of neutrino

Mass

> Plots show the spectra of SNe at |0
Kpc for two different models
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Pulsar Glitches |,

‘> Pulsars have fairly stable rotation

rates:

‘2 However, observe the secular
increase in pulse period

- Glitches are sudden dips in the

rotation period

> Vela shows glitches once every few
years

- Could be the result of transfer of

angular momentum from core to
crust

> At some critical lag rotation rate of
superfluid core couples to the curst,
imparting energy to the crust

AJ ~LAQ  AE = AJQ,,
AQ/Q ~ 10
AE ~ 10713-107 "M c?

Period (ms)

A glitch in Vela :

McCulloch et al,Aust. J. Phys. 1987 -

89.2014

89.2612 | ®

86.2610

89 2608 —————
0 ' 30 40

. 60 70
lime (days) after JD = 2445165-0

A composite Vela image
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NS Normal Mode Oscillations

> Sudden jolt due to a glitch, and superfluid vortex unpinning,
could cause oscillations of the core, emitting gravitational waves

» These normal mode oscillations have characteristic frequencies and
damping times that depend on the equation-of-state

>~ Detecting and measuring normal modes could reveal the
equation-of-state of neutron stars and their internal structure
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Accreting Neutron Stars

-2~ Spin frequencies of
accreting NS seems to be
stalled below 700 Hz
‘2~ Well below the break-up

speed < 1MS NS

‘2 What could be the reason - red glant
for this stall? i

-2~ Balance of accretion torque
with GW back reaction torque

-2~ Could be explained if
ellipticity is ~ 108
-2~ Could be induced by
mountains or relativistic

instabilities, e.g. -modes : i

in Frequency (Hz)

T T T T T T T

| cutoff _

pulses & burst oscillations
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Summary of Science with ET

-2- Fundamental Physics
-* |Is the nature of gravitational radiation as predicted by Einstein?
-® |s Einstein theory the correct theory of gravity!?
> Are black holes in nature black holes of GR?
> Are there naked singularities?
-2 Astrophysics
> What is the nature of gravitational collapse?
> What is the origin of gamma ray bursts!?
-* What is the structure of neutron stars and other compact
objects!?
2= Cosmology
-* How did massive black holes at galactic nuclei form and evolve?
>~ What is dark energy!?
>~ What phase transitions took place in the early Universe!
- VWWhat were the physical conditions at the big bang!?
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