
B.S. Sathyaprakash
School of Physics and Astronomy, Cardiff University, UK

MDC ET Next
What next for the Mock Data Challenge?

Thursday, 2 February 2012



100 101 102 103 104

Frequency (Hz)

10-25

10-24

10-23

10-22

10-21
St

ra
in

 (H
z-1

/2
)

ET-B
ET-D

ET: Sensitivity Options

Thursday, 2 February 2012



Thursday, 2 February 2012



Outline
What was the first ET MDC?

Gaussian background noise with ET-B sensitivity curve
Data from 3 detectors, ET1, ET2, ET3, located at the same site as Virgo
A cosmological population of binary neutron stars 
A year’s worth of data

What did we do?
First ever detection of such systems - a new population of astronomical sources

Verify GRB-GW Association
Check if compact binaries in which at least one of the companions is a neutron 
star are progenitors of short gamma-ray bursts

Measure the Hubble parameter to within 5% 
Compact binary inspirals are self-calibrating standard sirens
To be useful as standard candles it is necessary to identify the host and measure 
its redshift and so sky localization is a key science objective
If we binary black holes occur in sufficient numbers then EM identification may 
not be necessary but it would still be necessary to have a good resolution

Carry out strong field tests of general relativity
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What was First ET MDC?
What was the data?

Gaussian background noise with ET-B sensitivity curve
Data from 3 detectors, ET1, ET2, ET3, located at the same site as Virgo

A cosmological population of binary neutron stars 
A year’s worth of data

What was the challenge?
How good are current detection pipelines in disentangling overlapping 
signals and can we reach theoretical detection efficiency?
Does a cosmological population create a confusion background and if so 
that level?

Can we detect the confusion background and learn about the underlying 
pop?

What did we do?
Estimation of PSD using the null stream
Recovery of BNS background from residuals
Search for BNS using iHOPE pipeline
Search for stochastic background
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What did we Find?
Null stream is a very powerful data stream in ET
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FIG. 4: Left: Simulated time series of the gravitational strain at detector E1, for zmax = 6 and f1 = 10Hz (top) and the

same time series after the Fourier transform has been divided by the noise power spectral density of ET. Right: The tapered

projected ET noise spectrum used to color the noise. Example audio files of the simulated GW signal alone or in the presence

of noise can be found at the ET MDC website http://www.oca.eu/regimbau/ET-MDC_web/ET-MDC.html.

for a sample rate of 8192Hz.

IV. FIRST ANALYSIS

A. Null stream

A null stream is a combination of the detector output

streams such that the gravitational wave signal is iden-

tically zero and only noise remains. The existence of an

ET null stream was noted already in [46] and is a major

motivation for the triangular triple Michelson topology.

Given an incident GW tensor hij , the three interferom-

eter responses were derived in Eq. 5, from which, as al-

ready remarked in Section IIC, we find that the sum of

the three detector responses to any GW signal vanishes

identically. We may define the null stream as the sum

of the strain time series x(t) for the three ET detectors.

For each single detector A we have

xA
(t) ≡ nA

(t) + dAijh
ij
(t), (38)

where nA
(t) is the noise realization, thus

xnull(t) ≡
3�

A=1

xA
(t)

=

3�

A=1

nA
(t) +

3�

I=1

dAijh
ij
(t)

=

3�

A=1

nA
(t) (39)

is free of GW signals, and will also not contain any com-

mon (correlated) noise for which the sum over the three

detectors happens to vanish.

If the noise properties are homogeneous among the de-

tectors,

S1
n(f) � S2

n(f) � S3
n(f) , (40)

and if correlations between detectors can be neglected,

we can use the null stream to estimate the average PSD

in each of the three detectors. In this case,

�Xnull(f)X
∗
null(f

�
)� =

�
�

A,B

NANB∗

�

�
�
�

A

NANA∗

�

� 3
1

2
δ(f − f �

)ŜA
n (f), (41)

where Xnull(f) is the Fourier transform of xnull(t) and, in
the last line, ŜA

n (f) is the noise PSD in any of the three

interferometers in the absence of a GW signal. Defining

�Xnull(f)X
∗
null(f

�
)� = 1

2
δ(f − f �

)Sn,null(f), (42)

we find

ŜA
n (f) �

1

3
Sn,null(f) (43)

as an estimate for the individual single-interferometer

PSDs with the signals removed.

The null stream PSD, which we plot on the left panel

of Fig. 5, then has the advantage of giving a better rep-

resentation of the noise content of the three detectors.

The typical sensitivity improvement is nonetheless fairly

small, about 1% in the 10 – 100Hz band. As a proof
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FIG. 1: Left : Configuration of the planned detector Einstein Telescope. Right : design sensitivity of two possible configurations

(ET-B and ET-D) compared to the sensitivity of first generation detectors (here LIGO and Virgo) and the projected sensitivity

of second generation (advanced) detectors (here the aLIGO zero-detuned high-power noise curve [27] and aVirgo [28]).

are

h11 = −h22 = h+, h12 = h21 = h×. (1)

Let (ex, ey, ez) be an orthonormal triad in which the
metric perturbation takes the transverse-traceless form.
Then, using basis polarization tensors defined as

e+ ≡ ex ⊗ ex − ey ⊗ ey, e× ≡ ex ⊗ ey + ey ⊗ ex, (2)

the metric perturbation can be written as

h = h+ e+ + h× e×. (3)

ET’s interferometers can also be represented as STF ten-
sors:

d1 =
1

2
(e1 ⊗ e1 − e2 ⊗ e2),

d2 =
1

2
(e2 ⊗ e2 − e3 ⊗ e3),

d3 =
1

2
(e3 ⊗ e3 − e1 ⊗ e1), (4)

where e1, e2 and e3 are unit vectors along the three arms
of ET. The response hA(t), A = 1, 2, 3, of the interferom-
eters to an incident gravitational wave is just the inner
product of the detector tensor dA with the wave tensor
h:

hA(t) = dAij h
ij = dAije

ij
+ h+ + dAije

ij
× h×, (5)

which motivates definition of the antenna pattern func-
tions FA

+ and FA
× :

FA
+ ≡ dAij e

ij
+ , FA

× ≡ dAij e
ij
×, (6)

in terms of which the response can be written as

hA(t) = dAij h
ij = FA

+ h+ + FA
× h×. (7)

Let us now choose a coordinate system fixed to ET
such that the three arms of ET’s triangle are in the xy-
plane and the unit vectors along the arms are

e1 =
1

2

�√
3, −1, 0

�
, e2 =

1

2

�√
3, 1, 0

�
,

e3 =
�
0, 1, 0

�
.

(8)

Let (θ, ϕ) be the direction to the source in this coordinate
system with (eθ, eθ) denoting directions of increasing θ
and ϕ, respectively.

The unit vectors ex, ey and ez defining the radiation
frame can be obtained by successive counterclockwise ro-
tations about the z-axis by an angle ϕ, about the new
y-axis by an angle θ and the final z-axis by an angle ψ:

ex = (− sinϕ sinψ + cos θ cosϕ cosψ, cosϕ sinψ + cos θ sinϕ cosψ, − sin θ cosψ),

ey = (− sinϕ cosψ − cos θ cosϕ sinψ, cosϕ cosψ − cos θ sinϕ sinψ, − sin θ sinψ),

ez = (sin θ cosϕ, sin θ sinϕ, cos θ),
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where Xnull(f) is the Fourier transform of xnull(t) and, in
the last line, ŜA

n (f) is the noise PSD in any of the three

interferometers in the absence of a GW signal. Defining
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we find
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as an estimate for the individual single-interferometer

PSDs with the signals removed.

The null stream PSD, which we plot on the left panel

of Fig. 5, then has the advantage of giving a better rep-

resentation of the noise content of the three detectors.

The typical sensitivity improvement is nonetheless fairly

small, about 1% in the 10 – 100Hz band. As a proof
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FIG. 5: Left—Sample PSD calculated from the null stream, compared to the theoretical ETB fit 18. The null PSD is estimated
within data segments of length 2048 s by averaging non-overlapping samples each of 1 s length, and is then averaged over all
2048 s long segments in the dataset. The figure shows

�
Sn,null(f)/3. Right—Difference between (one-third of) the null stream

PSD and the Ej PSDs obtained by averaging over the whole dataset, as defined in Eq. 44. The residuals are consistent with
the f−7/3 spectrum expected from binary inspiral signals. To aid visibility, the quantities plotted have been scaled by 1049 and
the constant 0.01 has been added.

of principle of the effectiveness of the use of null stream
PSD instead of the single detector one, we computed the
median over the whole dataset of the difference between
(one-third of) the null stream PSD and the individual
detector PSD’s SA

n (f). These residuals should be consis-
tent with the median PSD of the injected signals in each
detector:

S
A
n (f)−

1

3
Sn,null � Ĥ(f) (44)

where Ĥ(f) is the power spectral density of GW sig-
nals. The result of this operation is shown in Fig. 5, right
panel. The residual spectrum between 10 and 400Hz in
each detector is consistent with the theoretical expecta-
tion Sh(f) ∼ f

−7/3.

B. Compact Binary Coalescence analysis

We analysed the triple coincident simulated data us-
ing a modified version of the LIGO-Virgo Ihope pipeline
[8, 32, 40, 41] which is used to search for signals from
compact binary coalescences (CBC). The stages of the
pipeline are as follows:

• Estimation of the PSD by median over several over-
lapping time chunks within a 2048 s segment

• Generation of a template bank covering the chosen
parameter space of binary masses

• Matched filtering of each template against the data
stream of each detector to generate an SNR time
series ρ(t)

• Trigger generation: for each template, maxima of
SNR over a sliding time window of length 15 s were

found, and a “trigger” was generated if any such
maxima exceeded an SNR of 5.5

• Clustering to reduce trigger numbers: if there are
multiple triggers within a small region of parame-
ter space (binary masses plus time [47]) the trigger
with largest SNR is selected and others in the re-
gion are discarded

• Coincidence between detectors: only pairs or triples
of triggers with consistent coalescence times and
masses [48] survive and are designated as events

• Ranking of events by combined SNR2, ρ2C (sum of
ρ2 over coincident triggers).

There are several differences compared to the standard
LIGO-Virgo search. The main ones concern the fre-
quency range of data searched, the parameter space of
the search and the method for determining the signifi-
cance of candidate events.
The length of an inspiral template increases rapidly

with the lowest frequency that is matched filtered in the
analysis. For technical reasons related to memory load
and PSD estimation the standard matched filter code
used for LSC-Virgo analyses [40] cannot filter templates
longer than a few minutes: hence we chose to impose a
lower frequency cutoff of 25Hz. This limitation should
be addressed in future analyses (and may be relevant to
analysis of Advanced LIGO/Virgo data).
The template bank was chosen to cover the possible

range of redshifted (i.e. observed) mass pairs correspond-
ing to the BNS injections up to redshift 4. The mini-
mum component mass was taken as 1.2M⊙; with a max-
imum injected component mass of 3M⊙, the observed
total mass at z = 4 is then 15M⊙, which we took as
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FIG. 5: Left—Sample PSD calculated from the null stream, compared to the theoretical ETB fit 18. The null PSD is estimated
within data segments of length 2048 s by averaging non-overlapping samples each of 1 s length, and is then averaged over all
2048 s long segments in the dataset. The figure shows

�
Sn,null(f)/3. Right—Difference between (one-third of) the null stream

PSD and the Ej PSDs obtained by averaging over the whole dataset, as defined in Eq. 44. The residuals are consistent with
the f−7/3 spectrum expected from binary inspiral signals. To aid visibility, the quantities plotted have been scaled by 1049 and
the constant 0.01 has been added.
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used for LSC-Virgo analyses [40] cannot filter templates
longer than a few minutes: hence we chose to impose a
lower frequency cutoff of 25Hz. This limitation should
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with largest SNR is selected and others in the re-
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of triggers with consistent coalescence times and
masses [48] survive and are designated as events

• Ranking of events by combined SNR2, ρ2C (sum of
ρ2 over coincident triggers).

There are several differences compared to the standard
LIGO-Virgo search. The main ones concern the fre-
quency range of data searched, the parameter space of
the search and the method for determining the signifi-
cance of candidate events.
The length of an inspiral template increases rapidly

with the lowest frequency that is matched filtered in the
analysis. For technical reasons related to memory load
and PSD estimation the standard matched filter code
used for LSC-Virgo analyses [40] cannot filter templates
longer than a few minutes: hence we chose to impose a
lower frequency cutoff of 25Hz. This limitation should
be addressed in future analyses (and may be relevant to
analysis of Advanced LIGO/Virgo data).
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range of redshifted (i.e. observed) mass pairs correspond-
ing to the BNS injections up to redshift 4. The mini-
mum component mass was taken as 1.2M⊙; with a max-
imum injected component mass of 3M⊙, the observed
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All quantities have been scaled by 1049 and a constant value 
of 0.01 added
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Detection Efficiency for BNS 13

FIG. 7: Top left—Distributions of all BNS injections, and those found by the CBC pipeline, vs. redshift. Here events with
ρC > 8.8 were considered as candidate signals. Top right—Efficiency of the CBC search vs. redshift. We show the theoretical
(ideal) efficiency as defined in Eq. 26 for a threshold SNR of ρT = 8 and a low frequency cutoff f1 = 1Hz, and also for ρT = 8.8,
f1 = 25Hz for comparison with the signals found by the ihope pipeline. Bottom left—Histogram of fractional errors in chirp
mass. Bottom right—Histogram of fractional errors in total mass.
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FIG. 8: Left—Overlap reduction function for two V-shaped ET detectors separated by 120 degrees. Right—Energy density
parameter of the background produced by the coalescence of binary neutron stars, as a function of observed frequency.

6

ι significantly different from these extreme values. The

maximum value Fmax = 3/2 is obtained when θ = ι = 0,

while the value of F2
averaged over (θ, ψ, ι) is

F2 =
1

8π

� π

0

� π

0

� 2π

0
F2

sin θ sin ι dθ dι dψ =
9

25
.

So the root-mean-square value of F is Frms ≡
�

F2 =

3/5. The horizon distance D̂L of a detector is defined

as the maximal distance at which an optimally oriented,

overhead binary (i.e. ι = θ = 0) can be detected above

a threshold SNR of ρ = ρT , chosen large enough to keep

the false alarm rate acceptably low; ρT = 8 is considered

reasonable for current detectors. Noting that F = 3/2

when ι = θ = 0, for ET the horizon is given by

D̂L ≡
�

15

8

(GMz
)
5/6

π2/3c3/2 ρT

�� f2

f1

f
−7/3

Sh(f)
df

�1/2

. (24)

The horizon distance is not a very useful measure since

essentially no signals can be detected beyond this dis-

tance with an SNR larger than ρT . A more meaningful

measure of the reach is the distance DL at which an “av-

erage” source, meaning one for which F = Frms = 3/5,

produces an SNR of ρT . For such a source we obtain

DL =
3

5
D̂L. (25)

For a binary consisting of two components of (physical)

mass 1.4M⊙ and for a threshold ρT = 8, we find DL �
13Gpc or z = 1.8, and D̂L � 37Gpc or z = 4, but it can

be larger for more massive binaries. In our simulations,

we inject signals of different orientations and polarization

angles distributed uniformly over comoving volume up to

a redshift of z = 6.

E. Efficiency vs. distance

The efficiency of a detector at a given distance, and

for binary sources with given physical component masses,

is the fraction of such sources for which ET achieves an

expected SNR ρ ≥ ρT . ET will not be sensitive to every

BNS merger at any given distance, but only to those that

are preferentially located in certain sky directions and

are suitably oriented [33]. The fraction �(DL) of sources

detected by ET at a given luminosity distance is given

by

�(DL) =
1

8π

� π

0

� π

0

� 2π

0
Π(ρ/ρT − 1) sin θ sin ι dθ dι dψ,

(26)

where Π is the unit step function Π(x) = 0 if x < 0 and

Π(x) = 1 if x > 0. Note that ρ is a function of all angles,

luminosity distance, redshift, etc. In Figure 7, top right,

we plot ET’s efficiency as a function of redshift for binary

neutron stars: the blue solid curve shows the efficiency

for physical masses m1 = m2 = 1.4M⊙, choosing a SNR

threshold ρT = 8 and a lower frequency cutoff f1 = 1Hz.

As shown in this figure, ET should have 50% efficiency

at a redshift of z ∼ 1.3, while its efficiency at z = 1.8

(distance at which the angle-averaged SNR is 8) is 30%.

III. SIMULATION OF ET MOCK DATA

In this section we will discuss how ET mock data was

generated. We will describe the cosmological model used

and the rate of coalescence of binary neutron stars as a

function of redshift. We will also discuss how the back-

ground noise was generated and the waveform model used

in the simulation.

A. Simulation of the GW Signal

We use Monte Carlo techniques to generate simulated

extra-galactic populations of binary neutron stars and

produce time series of the gravitational wave signal in

the frequency band of ET. We first describe how the dis-

tribution of injected BNS sources over redshift and mass

was obtained, and then explain the simulation pipeline

summarized in Fig. 3.

We first consider the rate of BNS coalescences in the

Universe. We neglect the possible production of com-

pact binaries through interactions in dense star systems,

and we assume that the final merger of a compact bi-

nary occurs after two massive stars in a binary system

have collapsed to form neutron stars and have inspiralled

through the emission of gravitational waves. The merger

rate tracks the star formation rate, albeit with some de-

lay td from formation of the binary to final merger.

Following [17], we write the coalescence rate density

ρ̇c(z) (in Mpc
−3

yr
−1

) as:

ρ̇c(z) ∝
� ∞

tmin
d

ρ̇∗(zf (z, td))

1 + zf (z, td)
P (td) dtd with ρ̇c(0) = ρ̇0 ,

(27)

where ρ̇∗ is the star formation rate of [36] (in M⊙ Mpc
−3

yr
−1

), z the redshift when the binary system merges, zf

the redshift when the binary system is formed, P (td) the

probability distribution of the delay connecting z and

zf , and ρ̇0 the rate density in our local universe. The

normalization condition reproduces the local rate density

for z = 0 and the factor (1 + zf )
−1

converts the rate

density in the source frame into a rate density in the

observer frame.

The redshifts zf and z are related by the delay time
td which is the sum of the time from the initial binary

formation to its evolution into a compact binary, plus

the merging time τm after which emission of gravitational

waves occurs. The delay is also the difference in lookback

times between zf and z:

td =
1

H0

� zf

z

dz
�

(1 + z�)E(Ω, z�)
. (28)

5

the rate at which its frequency changes3 via

df

dt
=

96M5/3

5π
(πf)11/3 ⇒ M =

�
5π ḟ

96

�3/5

(πf)−11/5
.

(16)
Thus, measurement of the signal strain and rate of change
of frequency can together determine the system’s chirp
mass and its distance from Earth.

For cosmological sources, however, the distance recov-
ered by this method is not the comoving distance to the
source χ (equivalent to D for a spatially flat FRW uni-
verse), but rather its luminosity distance DL = (1+ z)χ.
This may be explained as follows: due to time dilation,
the chirp mass of the system inferred from Eq. (16) will
be “redshifted” by a factor (1 + z), thus the signal will
appear to have come from a source whose chirp mass is
(1 + z)M. Thus, if we reconstruct the masses of the bi-
nary from the frequency evolution of the waveform, we
will obtain redshifted masses a factor (1 + z) larger than
the physical masses of the system at redshift z. Symbols
such as m, M , M will denote physical masses, whereas
when discussing “redshifted” observed mass parameters
we will use a superscript z, for instance m

z
1 ≡ (1+ z)m1.

This increase in apparent mass does not, however,
mean that we will observe a greater signal amplitude:
gravitational-wave amplitude, being dimensionless, can-
not change due to redshift. Given this, and noting that
Mf is invariant under the effect of redshift, we find that
a source with physical chirp mass M will appear to us to
have a chirp mass (1 + z)M, and its apparent distance
will be the luminosity distance DL = (1+ z)χ, instead of
the proper or comoving distance.

Let us now consider the distance reach of ET to an in-
spiral signal from a compact binary of component masses
m1 and m2, at a luminosity distance DL and whose or-
bit (assumed here to be quasi-circular) makes an angle ι
with the line of sight. There exist different measures of
the distance reach of a detector: the horizon distance is
commonly used in data analysis (see, for instance, [32]),
while detector range and range functions were defined by
Finn and Chernoff [33] and are routinely used as a mea-
sure of detector performance. Our measures of distance
reach are inspired by all of these concepts.

The signal-to-noise ratio (SNR) ρA for a given sig-
nal (such as from an inspiralling binary), detected by
matched filtering with an optimum filter, in a detector
labelled A, is

ρ2A = 4

� ∞

0

|HA(f)|2

Sn(f)
df, (17)

3 In reality we don’t directly measure the evolution of the fre-
quency but use matched filtering to dig out the signal buried
in noisy data. The end result, however, is the same. In fact,
post-Newtonian approximation has allowed the computation of
very accurate signal models which allows us to infer not only the
chirp mass but also the mass ratio of the system.

where HA(f) is the Fourier transform of the response
of detector A and Sn(f) is the one-sided noise power
spectral density (PSD) of the detector, which we assume
to be the same for all three detectors in the ET array. A
good analytical fit [34] to the ET-B noise PSD is given
by Sn(f) = 10−50

hn(f)2 Hz−1, where

hn(f) = 2.39× 10−27
x
−15.64 + 0.349x−2.145

+ 1.76x−0.12 + 0.409x1.10
, (18)

and where x = f/100Hz. We may write the detector
response in terms of two GW polarizations via HA(f) =
F

A
+H+ + F

A
×H×, where

H+(f) =

�
5

24

(GMz)5/6

π2/3c3/2DL

(1 + cos2 ι)

2
f
−7/6

, (19)

H×(f) =

�
5

24

(GMz)5/6

π2/3c3/2DL
cos ι f−7/6

. (20)

The coherent SNR ρ for the ET network is simply the
quadrature sum of the individual SNRs: ρ2 =

�
ρ2A. For

low mass systems such as BNS, the SNR is dominated
by the inspiral part of the signal; the coherent SNR can
then be shown to reduce to

ρ2 =
5

6

(GMz)5/3F2

c3π4/3 D2
L

� f2

f1

f
−7/3

Sn(f)
df, (21)

where f1 and f2 are lower and upper frequency cutoffs
chosen so that the integral has negligible (say, < 1%)
contribution outside this range and F is a function of all
the angles given by

F2 ≡
�

A

�
1

4
(1 + cos2 ι)2 (FA

+ )2 + cos2 ι (FA
× )2

�
. (22)

Here F
A
+×, A = 1, 2, 3, are the antenna pattern func-

tions of the detector given by Eqs. (9)-(12). Substituting
for the antenna pattern functions and summing over the
three detectors gives

F2(θ, ϕ, ψ, ι) =
9

128

�
1 + cos2 ι

�2 �
1 + cos2 θ

�2
cos2 2ψ

+
9

32

�
1 + cos2 ι

�2
cos2 θ sin2 2ψ

+
9

32
cos2 ι

�
1 + cos2 θ

�2
sin2 2ψ

+
9

8
cos2 ι cos2 θ cos2 2ψ. (23)

The quantity F determines the SNR of a source of a
given (observed) chirp mass at any given distance. Al-
though the antenna power pattern F

2 is independent of
(ϕ, ψ), the quantity F is only independent of ϕ. For cer-
tain source locations and orientations, the response is still
independent of the polarization angle. For instance, ei-
ther when the source is “overhead” with respect to ET’s
plane (i.e. θ = 0,π) or face-on (i.e. ι = 0,π), F is inde-
pendent of ψ. It depends weakly on ψ for values of θ and
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right panel, and can be derived from the expression [49–
51]:

Ωgw(f) =
1

ρcrc
fF (f) (47)

where the integrated flux at the observed frequency f is
given by the sum of all the individual contributions at all
redshifts:

F (f) =

� zmax

0

dz

4πD2
L(z)

dEgw

df
(f,M̄(1 + z))

dR

dz
(z) (48)

where DL is the luminosity distance, dEgw

df the spectral

energy density averaged over orientation and M̄ is the
average physical chirp mass of the population.

In the quadrupolar approximation, and assuming a cir-
cular orbit,

dEgw

df
(f,Mz) =

(Gπ)2/3(Mz)5/3

3
f−1/3, for f < fz

lso

(49)
where fz

lso = (1 + z)−1flso is the observed (redshifted)
frequency at the last stable orbit. The predicted energy
density parameter increases as f2/3 before it reaches a
maximum Ωgw ∼ 4 × 10−9 at around 600Hz, with a
reference value at 100Hz of Ωref = 1.9× 10−9.

The strategy to search for a Gaussian (or continuous)
background, which could be confused with the intrinsic
noise of a single interferometer, is to cross-correlate mea-
surements of multiple detectors. When the background
is assumed to be isotropic, unpolarized and stationary,
the cross-correlation product is given by: [42]

Y =

� ∞

0
s̃∗1(f)Q̃(f)s̃2(f) df (50)

and the expected variance, which is dominated by the
noise, by

σ2
Y �

� ∞

0
P1(f)P2(f)|Q̃(f)|2 df, (51)

where

Q̃(f) ∝ γ12(f)Ωgw(f)

f3P1(f)P2(f)
(52)

is a filter that maximizes the signal-to-noise ratio (S/N).
In the above equation, P1 and P2 are the one-sided power
spectral noise densities of the two detectors and γ12 is the
normalized overlap reduction function, characterizing the
loss of sensitivity due to the separation and the relative
orientation of the detectors: see Fig. 8), left panel. For
two V-shaped detectors (γ = π/3) separated by β =
2π/3 degrees, γ12(0) = sin2(γ) cos(2β) = −3/8. The
normalization ensures that γ12 = 1 for co-located and
co-aligned L-shaped detectors.

We analyzed the data with the cross-correlation code
developed by the LIGO stochastic group. The data were

split into N = 40320 segments of length Tseg = 60 s, and
for each segment the cross-correlation product and the
theoretical variance were calculated using a template Ω ∼
f2/3 in the range 10− 500Hz. The frequency resolution
of our analysis was 0.25Hz. The final point estimate at
100Hz is given by [52, 53]

Ω̂ =
Yopt

Tseg
�

i σ
−2
Y,i

(53)

where Yi and σ2
Y,i are the cross-correlations and variances

calculated for each segment via Eq. (50), (51) respec-
tively, and Yopt is the weighted sum

Yopt =
�

i

Yi σ
−2
Y,i. (54)

The standard error on this estimate is given by

σΩ =

�
�

i

σ−2
Y,i

�−1/2

T−1
seg. (55)

For each of the pairs E1-E2, E2-E3 and E1-E3, we found a
point estimate of 1.02×10−9 with error σΩ = 2.6×10−11

at 100Hz.
Our point estimate is about a factor of 2 smaller than

the analytical expectation of 1.9×10−9, for which all the
sources between z = 0− 6 are included. The discrepancy
comes essentially from the suppression by our statistics
of occasional high signal-to-noise-ratio events belonging
to the shot noise regime where sources are separated by
long stretches of silence [54]. We checked than when re-
moving the loudest sources (with a signal-to-noise ratio
> 8 for the sensitivity of ET-B) in the analytical calcula-
tion Eq. 48, the expected amplitude agreed to our point
estimate within the σΩ error bar. We also verified that
when removing the closest sources (z < 0.2) in both the
data and the analytical calculation Eq. 48, the expected
amplitude and the point estimate agreed within the σΩ

error bar.
Methods able to probe better the low-rate regime are

currently under development and will be tested in fu-
ture Mock Data Challenges [79, 80]. However, even if
the background from compact binaries is not a Gaussian
continuous stochastic background, but rather a popcorn-
like background in the considered frequency range f >
10Hz [17, 51, 54], our analysis has shown that non-
Gaussian regimes can still be probed by the standard
cross-correlation statistics near optimal sensitivity, con-
firming the results of [79].

V. FUTURE DEVELOPMENT

This first set of Mock Data included only a single type
of signal, although the BNS systems we simulated are ex-
pected to be the most numerous and can thus yield much
interesting information for astrophysics and cosmology.
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FIG. 7: Top left—Distributions of all BNS injections, and those found by the CBC pipeline, vs. redshift. Here events with
ρC > 8.8 were considered as candidate signals. Top right—Efficiency of the CBC search vs. redshift. We show the theoretical
(ideal) efficiency as defined in Eq. 26 for a threshold SNR of ρT = 8 and a low frequency cutoff f1 = 1Hz, and also for ρT = 8.8,
f1 = 25Hz for comparison with the signals found by the ihope pipeline. Bottom left—Histogram of fractional errors in chirp
mass. Bottom right—Histogram of fractional errors in total mass.
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FIG. 8: Left—Overlap reduction function for two V-shaped ET detectors separated by 120 degrees. Right—Energy density
parameter of the background produced by the coalescence of binary neutron stars, as a function of observed frequency.Thursday, 2 February 2012


