Testing star formation models with Einstein Telescope

Chris Van Den Broeck

ET WG4 virtual face-to-face, 02/10/2009

- Star formation rate (SFR) models and their impact on compact binary coalescence rates
- Binary neutron star coalescences as trackers of SFR
- Simulations
- Results

Star formation models and compact binary coalescence

 Coalescence rate at redshift z, per unit time and unit volume, as observed at z=0:

$$\dot{\rho}_{c}^{0}(z) = \dot{\rho}_{c}^{0}(0) \frac{\dot{\rho}_{*,c}(z)}{\dot{\rho}_{*,c}(0)}$$

where: $\dot{\rho}_{c}^{0}(0)$ coalescence rate at current epoch (Mpc⁻³ Myr⁻¹) $\dot{\rho}_{*,c}^{0}(z)$ relates past SFR to rate of coalescence

• Relationship with underlying SFR $\dot{
ho}_*(z)$:

$$\dot{\rho}^{0}_{*,c}(z) = \int \frac{\dot{\rho}_{*}(z_f)}{(1+z_f)} P(t_d) dt_d$$

- with z_f redshift at which progenitor binary formed
 - $t_{d}\;\;$ delay time between formation of progenitor and coalescence

 $P(t_d)$ probability distribution for delay time

• For $t_d > au_0$ (minimum delay time), $P(t_d) \propto 1/t_d$

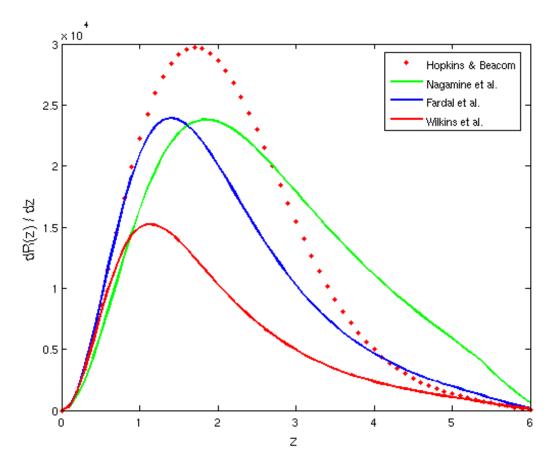
Star formation models and compact binary coalescence

- $\dot{\rho}_c^0(z)$ coalescence rate per unit time and per unit (comoving) volume
- The coalescence rate per unit time and per unit redshift is then

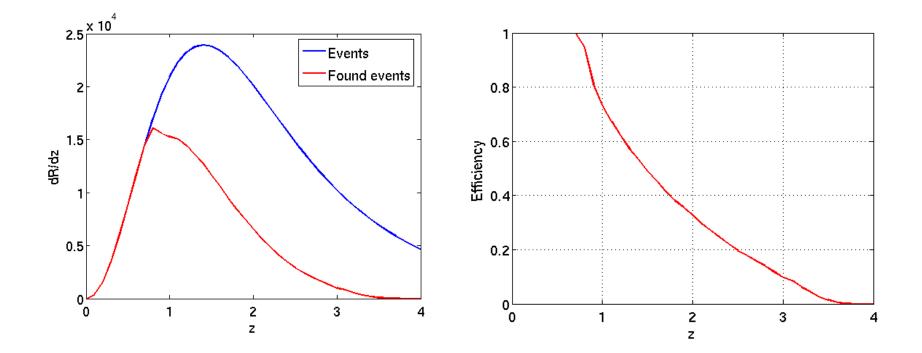
$$\frac{dR_c^0}{dz}(z) = \dot{\rho}_c^0(z) \frac{dV_c}{dz}(z)$$

- This depends on:
 - Model for the formation of progenitor binaries $\dot{
 ho}_*(z)$
 - Rate of coalescence at current epoch $\dot{
 ho}_c^0(0)$
 - Minimum delay time au_0 between formation and coalescence

Different SFR models


Will consider 4 different models [see Regimbau & Hughes, arXiv:0901.2958 for references]:

- Hopkins & Beacom '06: Lower bounds using evolution of stellar mass density, metal mass density, SN rate density; upper bound from Super-Kamiokande results on neutrino flux from core collapse SN
- Nagamine et al. '06: Combining results from (i) direct observations, (ii) a model using local fossil evidence at z ~ 0, (iii) theoretical *ab initio* models
- Fardal et al. '07: New proposal for initial mass function with a view on reconciling SFR predictions with total extragalactic background radiation
- Wilkins et al. '08: Based on stellar mass density measurements, new ansatz for initial mass function


Different SFR models

 Tania's code rate.m (available in WG4 work area): Specify model, minimum delay time τ₀ (e.g., 20 Myr for BNS), local coalescence rate ρ_c⁰(0) (e.g., 0.03 Mpc⁻³ Myr⁻¹)

Binary neutron star coalescences as trackers of SFR

- BNS events most abundant compact binary coalescences
- ET should see ~10⁶ yr⁻¹
- But: detection efficiency? (Demanding, e.g., inspiral SNR>8)

Inferring coalescence rates from observed BNS events

- From BNS inspiral signal: measure luminosity distance D
- Relationship between D_L and redshift z depends on dynamics and geometry of the Universe
- Assume a cosmological model, e.g., spatially flat Friedman-Robertson-Walker with $H_0 = 70$ km s⁻¹ Mpc⁻¹, $\Omega_M = 0.27$, $\Omega_{\Lambda} = 0.73$, w = -1
- Use cosmological model to infer z from measured D
- Bin "measured" redshifts to measure dR/dz
- Recovered distribution will be imperfect because of:
 - Loss of efficiency above $z \sim 0.7$
 - Uncertainties in measuring D₁

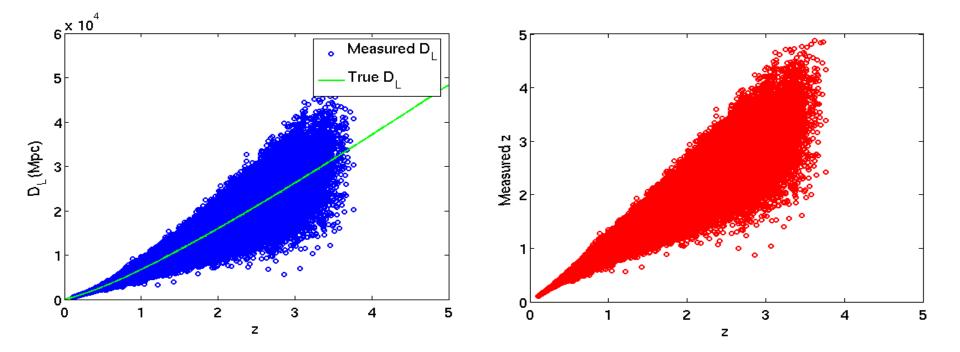
Measuring D_{L}

- Uncertainty in D_L:
 - Uncertainty due to ET's noise; can be modeled roughly as $[\Delta D_L/D_L]_{ET} \sim 1/SNR$
 - Uncertainty due to weak lensing, which we model as $[\Delta D_L/D_L]_{wL} = 0.05 \text{ z}$
- Add in quadrature:

 $\Delta (D_{L}/D_{L})^{2} = ([\Delta D_{L}/D_{L}]_{ET})^{2} + ([\Delta D_{L}/D_{L}]_{WL})^{2}$

Simulations

- Simulate a "catalog" of coalescence events, distributed
 - Randomly in sky position, drawn from uniform distribution
 - Randomly in orientation, drawn from uniform distribution
 - Randomly in (m₁, m₂), drawn from Gaussian (1.35 \pm 0.04) M_{sun}
 - Randomly in redshift, drawn from coalescence rate model dR/dz
- Demand SNR>8 for detectability
- To each event, assign "measured" distance $D_{1}'(z) = D_{1}^{0}(z) + \delta D_{1}(z)$


where $D_1^{0}(z)$ computed using cosmological model, $\delta D_{\mu}(z)$ drawn from Gaussian distribution, width ΔD_{μ}

- Invert D'(z) to get inferred redshift z'
- Perform binning in $z' \rightarrow$ recover rate distribution dR'/dz
- Do this many times (many different catalogs) to get a 1-sigma spread for dR'/dz

Simulations (cont'd)

• "Measured" luminosity distances, "measured" redshifts in a catalog:

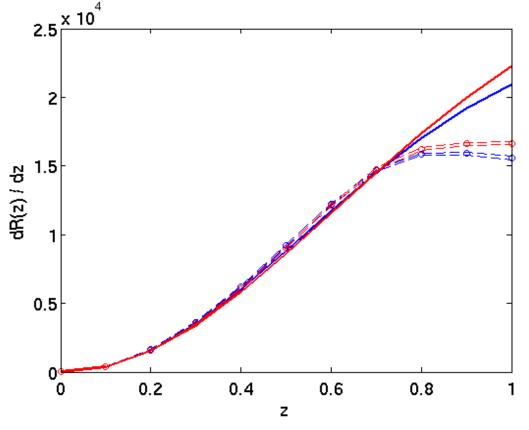
Results

- Assume minimum delay time $\tau_0 = 20$ Myr, local coalescence rate $\dot{\rho}_{c}^{0}(0) = 0.03 \text{ Mpc}^{-3} \text{ Myr}^{-1}$ 2.5 × 10⁴ Blue: Fardal et al. Red: Wilkins et al. 2 • Green: Nagamine et al. 2p / (z) 4p / (z) 4p 1 Solid lines: predicted rates **Circles:** recovered rates 0.5 **Dashed:** 1-sigma spreads
 - NI

0.8

0.2

0

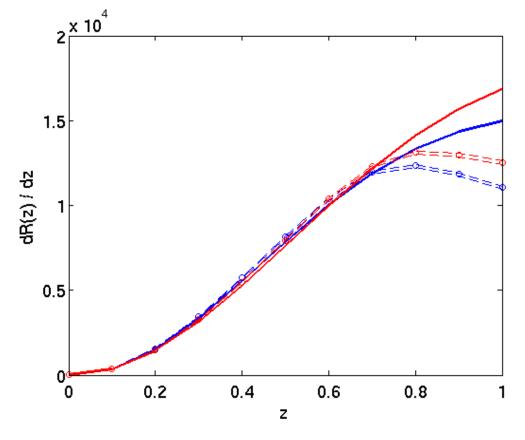

0.4

z

0.6

Results (cont'd)

• For the given $\dot{\rho}_c^0(0)$ and τ_0 , ET cannot distinguish between Hopkins & Beacom and Fardal et al.


- Blue: Fardal et al.
- Red: Hopkins & Beacom

Solid lines: predicted rates Circles: recovered rates Dashed: 1-sigma spreads

Results (cont'd)

• Effect of minimum delay time?

- Blue: Wilkins et al.,
 τ₀ = 20 Myr
- Red: Fardal et al., $\tau_0 = 100 \text{ Myr}$

Solid lines: predicted rates Circles: recovered rates Dashed: 1-sigma spreads

Conclusions

- Can use BNS coalescences as trackers of SFR
- Given an SFR model, free parameters are:
 - Coalescence rate at current epoch $\dot{
 ho}_c^0(0)$

(Can be assumed known from 2nd generation detectors.)

- Minimum delay time τ_0
- For same minimum delay time, ET can distinguish between 3 SFR models in recent literature
- But: Differences in minimum delay time can easily lead to confusion between models

General statement: ET can measure coalescence rate up to z ~ 0.7 with uncertainty of a few percent

