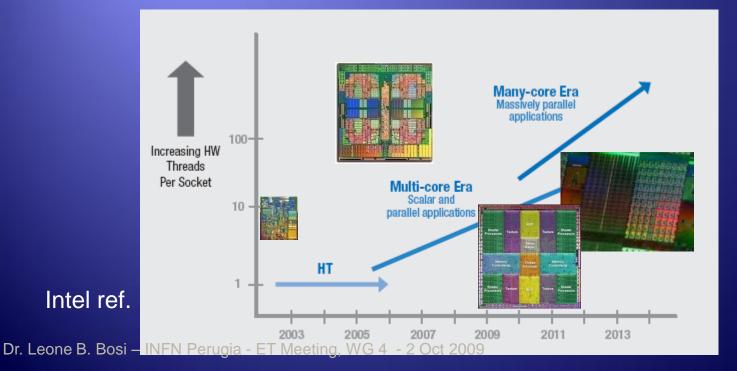

Computing infrastructure manycore architectures perspective

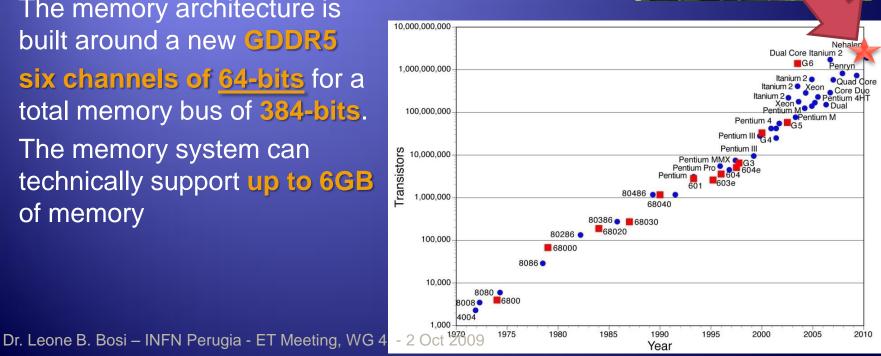
Dr. Leone B. Bosi – INFN Perugia

ET – WG4 Meeting 2 October 2009


Dr. Leone B. Bosi – INFN Perugia - ET Meeting, WG 4 - 2 Oct 2009

Technological outlook

Technological outlook


- Most important chip semiconductor maker are working in order to limit problems due to integration scale reduction.
- In fact last 10 years the processors architectures are changed a lot, introducing parallelization at several architectural levels.
- That evolutive process will continue in a ever more deeper manner, moving to the so called "many-core" era.

Status of art

Nvidia Fermi core:

- The GPU is made up of **3.0 billion transistors** with 40nm technology.
- 512 CUDA processing cores organized into 16 streaming multiprocessors of 32 cores each.
- The memory architecture is built around a new GDDR5
- six channels of 64-bits for a total memory bus of 384-bits.
- The memory system can technically support up to 6GB of memory

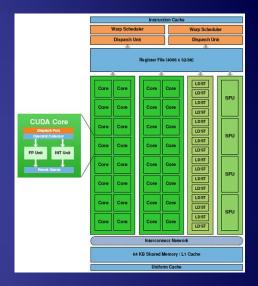
Status of art:

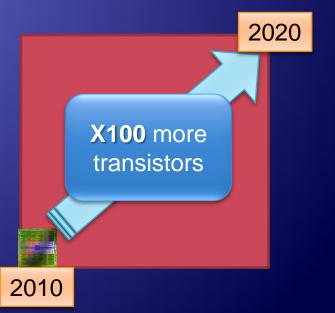
AMD ATI Radeon HD 5850

- 2.15 billion 40nm transistors
- 1440 Stream Processing Units

- 1600 shader units, divided in 20 core SIMD with 16 stream processor each one
- Declared Peak power:
 - Single precision: 2,7 TFLOPs
 - Double precision: 544 GFLOPs

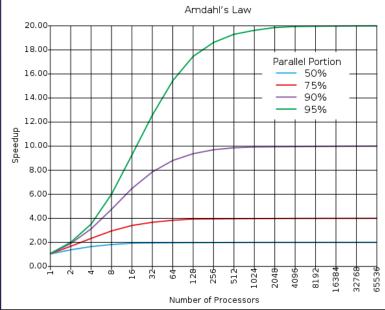
Intel Larrabee


- 2 billion 40nm transistor
- 32-48 SIMD core x86-64, based on Pentium P54C
- Each core 512-bit vector processing unit
 =16 precision floating point numbers at a time


Display Interface System Interface (PCle)		CPU Core L1 Inst L1 Data Cache L256KB L2 Cache Local Subset			CPU Core L1 Inst L1 Data Cache L256KB L2 Cache Local Subset			CPU Core L1 Inst L1 Data Cache 256KB L2 Cache Local Subset	Memory Cont
Texture Logic	256KB L.2 Cache L.ocal Subset L.1 Inst L1 Data Cache CPU Core	256KB L2 Cache Local Subset	256KB L2 Cache Local Subset L1 Inst L1 Data Cache CPU Core	256KB L2 Cache Local Subset L1 Inst Cache CPU Core	256KB L2 Cache Local Subset L1 Inst L1 Data Cache CPU Core	256KB L2 Cache Local Subset L1 Inst L1 Data Cache CPU Core	256KB L2 Cache Local Subset L1 Inst L1 Data Cache CPU Core	256KB L2 Cache Local Subset	ontroller (GDDR5)

Some performance considerations:

- These new architectures require a complete different programming models.
- In future, in the manycore era, computing power will be distributed across multiple cores (10000>?) on a single processor, and many processors on a single board.
- Performance achievable from these architecture is not predictable because depends on algorithm and relation with:
 - Memory/registries architecture model
 - Intercommunication
 - Serial portion of the algorithm


6

A note on Amdahl's law:

- The speedup of a program using multiple processors in parallel is limited by the time needed for the sequential fraction of the program.
- The maximum speedup that can be achieved by using *N* processors is: $\frac{1}{(1-P) + \frac{P}{N}}$

where P is the proportion of a program that can be made parallel.

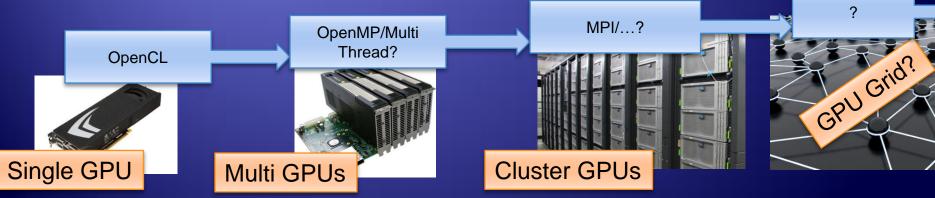
GPU performances: The CB case (1):

- We have developed culnspiral library a prototype of a full GPU pipeline, permitting to evaluate perspective and potentiality of these new architecture(details will be presented on Erice talk)
- This library implements fully GPU functions (e.g.):
 - Taylor PN2 generator
 - Normalization
 - Matched filtering
 - Maximum identification
- Main performances speedup measured:
 - Template Generation: x100
 - FFT: x60
 - Reduction: x80

GPU performances: The CB case (2):

- If we consider analysis parameters of :
 - low.cutof.freq:24Hz,
 - vector length 2^20, fs=4kHz the
- The processing rate if roughly of **35 templates/sec** (lower limit)
- The online constrain processing if of 4000 templates. That means that the Virgo matched filtering only analysis can be performed with a couple of GPU 275 (=500 Euro)

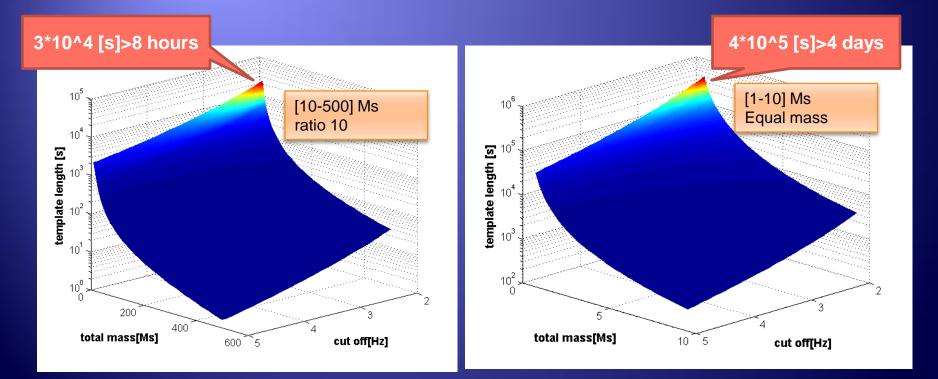
Pipeline Gain (lower limit):
50 with GTX 275
→ expected with Fermi GPU: 150


Forecast by 2020:

- We could try to make a projection of the available computing power by 2020, in the context of CB like algorithms, making some assumptions:
- We can start considering that the actual firsts attempts of manycore architecture provides a factor x150 in single precision respect CPU implementation.
- 2. We can consider a Moore's law factor of **x100**
- From the experiences coming from massive parallel architecture, usually performances are reduced significantly by communication overhead, thus we take x0.4 (it could be even worse)
- 4. We obtain :
 - a gain of a factor 6000 respect the actual CPU implementation.
 - Equivalent to 5 TFLOPs or higher on a single manycore processor by 2020.

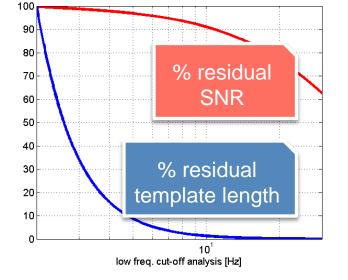
Dr. Leone B. Bosi – INFN Perugia - ET Meeting, WG 4 - 2 Oct 2009

GPU computing e programming paradigms


- The architectural differences between GPU and CPU are evident, in particular the way how the relations between cores, memory, shared memory and IO subsystem are organized
- Moreover different chip producers implement different solutions with different characteristics and instructions sets
- Recently important efforts have been done by Apple, Intel, NVIDIA, Sony, ... in the direction of programming standardization for parallel architecture: The Khronos Group, defining the Open Computing Language (OpenCL).

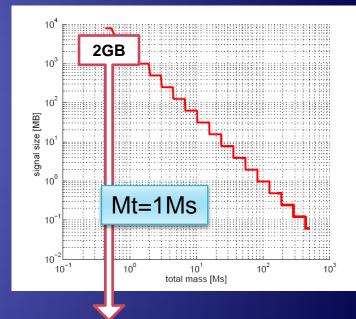
Dr. Leone B. Bosi – INFN Perugia - ET Meeting, WG 4 - 2 Oct 2009

What with this power? Inspiral case


ET sensitivity permits to observe Inspiral signals for much more longer time respect actual detectors.

Inspiral case: data handling

- A template bank roughly estimated for "classical" inspiral analysis is composed by 2000000 templates (mm=95%,[1-500]Ms) (e.g.Virgo @30Hz=7000)
- The complexity gains of about 500 times.
- □ For longest template we can operate in a more tricky manner→"inverse followup"


from[Hz]	to [Hz]	time[s]	%
2	3	$85000 \mathrm{~s}$	66%
2	5	$117000~{\rm s}$	91%
5	10	$9500 \ s$	7.5%
10	$1 \mathrm{kHz}$	$1776~{\rm s}$	1.5%

Inspiral case: "inverse followup analysis"

- Divide the investigative process in more steps:
 - The Firsts(detection) try to catch the inspiral process from where it is more important for the detection point of view (@ ET era, templates will be composed by inspiral, merging and ringdown phase.)
 - The next step performs a reverse followup of the events with a multisample rate analysis, introducing more accuracy and following the events evolution

switching in observation mode.

Multi-samplerate format

from[Hz]	to [Hz]	time[s]	sample rate[Hz]	size $[MB]$
2	5	$117000 { m \ s}$	10 Hz	4MB
5	10	$9500 \mathrm{~s}$	20 Hz	1 MB
10	1kHz	$1776~{\rm s}$	$4 \mathrm{kHz}$	8MB
total:				13MB

Inspiral case: detection computing cost

- Given a template bank for ET, We can define to truncate critical long inspiral by chosing properly the low frequency cut-off (e.g.4Hz) With this choice we can reduce the max template longth for this
- With this choice we can reduce the max template length for this analysis step \rightarrow 3600s
- 2000000 templates (length=2hours@4kHz), today using a culnspiral GPU like library to process a single timeslice we require: 2000000 x 0.8 s=18 days!!
- If we renormalize respect the previous estimated gain factor (@2020 forecast) 3x100*0.4=120 we obtain

\rightarrow 4hours computing time

 It seems plausible that by 2020 computing innovation we will be able to pursue ET requirements for this task.