Mock Data Production, Characteristics, and Confusion Background

WG4 f2f – Nice 09/01/10 Tania Regimbau

ET Mock Data

 \succ time series at the detector outputs E1, E2, E3

Noise : colored Gaussian noise based on ET-B sensitivity

➢ GW signal : extra galactic population of BNS

1 month of data on Atlas frames :

✓ duration 2048 s
✓ sample rate 8192 Hz
✓ f_I =10 Hz

Simulation Code (GW signal)

Distributions

coalescence time (Poisson process):

$$p(\Delta t) \propto \exp(-\Delta t / \lambda) \text{ with } \lambda = \left[\int_{z_{\min}}^{z_{\max}} \frac{dR_c^o}{dz}(z) dz\right]^{-1}$$

- masses: Gaussian distribution
- ➤ redshift: $p(z) \propto \frac{dR_c^o}{dz}(z)$
- position in the sky: uniform distribution
- > **polarization:** uniform distribution
- > phase at the last stable orbit: uniform distribution

Coalescence Rate

$$\frac{dR_c}{dz}(z) = \dot{\rho}_c^o(z) \frac{dV}{dz}(z) \text{ with } \dot{\rho}_c^o(z) \propto \int \frac{\dot{\rho}_*(z_f)}{1+z_f} P(t_d) dt_d$$

for:

SFR of Hopkins & Beacom 2006 $H_0 = 0.7, \ \Omega_m = 0.3 \text{ and } \Omega_\Lambda = 0.7$ and (BNS):

$$\begin{cases} \dot{\rho}_c^o(0) = 1 \text{ Myr}^{-1} \text{Mpc}^{-3} * \\ P(t_d) \propto 1 / t_d \text{ with } t_d > 20 \text{ Myr} \end{cases}$$

* 'realistic' rate from the LIGO rate paper

average time step

Luminosity Distance

z

Waveforms: Taylor T3 3.5 PPN

Beam Functions

Detection Regimes

Defined by the duty cycle i.e the ratio between the average duration of the waveforms and the time interval between successive waveforms (also the average number of sources present at the detector)

$$\Delta(z) = \int_0^z (1+z')\overline{\tau} \, \frac{dR_c^o}{dz'}(z')dz'$$

Resolved sources at close redshifts Sources separated by long stretches of silence

Popcorn background Sources start to overlap

Continuous stochastic background Superposition of unresolved sources

Signal Duration

$$\tau(day) \sim 5.4(\frac{M_c^{-5/3}}{1.22M_{\odot}})f_L^{-8/3}$$

f _L (Hz)	NS-NS (1.4+1.4)	NS-BH (1.4+10)
40 (initial)	25 s	5.8 s
10 (Ad LIGO)	16.7 m	3.9 m
5 (Ad Virgo)	1.8 h	24.6 m
3 (possible ET)	6.9 h	1.6 h
1 (planned ET)	5.4 d	1.2 d

Duty Cycle

Evolution with z_{max}

Evolution with f_L

Filter

Confusion Background NS-NS

no PN corrections, first harmonic in eccentricity

Stochastic analysis

CC statistic on 100000 s:

Pt estimate (100 Hz) = 7.4e-10 Error = 3.5e-11

To continue with Craig's talk...