Einstein Telescope Mock Data Analysis

Craig Robinson (with many slides and plots shamelessly stolen from Katarzyna Wójcik)

Outline

- Introduction
- ET Mock Data
- Pipeline
- Results
- Summary

About the ET Mock Data

- Binary neutron star signals (TaylorT3, 3.5PN in phase) injected into simulated Gaussian noise coloured with the ET pre-design PSD
- Signals injected according to a Poisson rate up to z = 6
- Distribution as a function of red-shift according to some plausible model (for more details, see Tania's talk from yesterday)
- All the parameters fixed but not known during search
- No glitches

Data characteristics

• Distribution of injections as a function of some parameters:

Distribution of injection as a function of (redshifted) chirp mass and (redshifted) total mass

Data characteristics

• Distribution of injections as a function of some parameters:

Distribution of injection as a function of time and redshift

Data analysis - the Pipeline

Pipeline details

- Standard ihope pipeline similar to that used in current LV searches
- Parameters chosen largely conform to those used in current searches
 - e.g. low frequency cutoff set to 40Hz
 - Tuning of coincidence tests etc taken straight out of recent ini files
 - False alarm rate estimates obtained from time-slides inappropriate in the presence of many strong signals
 - Almost certainly not optimal for ET, but a good test to see how we do 'out of the box'

Template bank

- Covering the full space of low-mass CBC search leads to huge numbers of templates (~20 000 templates)
- Reduction of number of templates by making changes in parameters:
- Assume reasonably symmetric systems minimum eta = 0.18 maximum eta=0.25
- restriction of other parameters:

```
minimum mass =1.2M_{\odot}
maximum mass =7.0M_{\odot}
maximum total mass =14.0M_{\odot}
```

Template bank

Figure 1. Plot of about 20 000 templates before changes in parameters

Template bank

Figure 2. Plot of reduced template bank including around 6000 templates

- The simulated ET data included 180062 injections
- We managed to find 4953 unique events with estimated FAR of o (i.e. louder than all time slides)

Histograms of errors in the measured parameters:

Fractional error in Mchirp

Fractional error in total mass

Histograms of errors in the measured parameters:

Error measured in the end time

Efficiency curve:

Distribution of injection and found events as a function of redshift and efficiency as a function of redshift

Summary

- We managed to find only a fraction of signals which were hidden in the data using standard pipeline
- Only nearby events were found, and even then many were missed
 - Systematic at low chirp masses likely due to template bank used
- Detailed information and plots are on the webpage:

https://atlas.atlas.aei.uni-hannover.de/~kwojcik/LSC/ETData/80000000-802420736/