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Goal of the talk

To show that gravitational-wave observations of
compact binaries offer the best possible tests of
general relativity, indeed any metric theory of
gravity, beyond the solar system tests and binary
pulsar tests.
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A metric theory of gravity

-2 Tests of the equivalence principle have confirmed that the only
possible theories of gravity are the so-called metric theories

‘2~ A metric theory of gravity is one in which
* there exists a symmetric metric tensor
-* test bodies follow geodesics of this metric

- in local Lorentz frames, non-gravitational laws of physics are those of
special relativity
> All non-gravitational fields couple in the same manner to a single

gravitational field - that is “universal coupling”
» Metric is a property of the spacetime

‘> The only gravitational field that enters the equations of

motion is the metric

> Other fields (scalar, vector, etc.) may generate the spacetime curvature
associated with the metric but they cannot directly influence the
equations of motion
Will, LRR
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Parametrized post-Newtonian
formalism

-2 In slow-motion, weak-field limit all metric theories of

gravity have the same structure

>~ Can be written as an expansion about the Minkowski metric in
terms of dimensionless gravitational potentials of varying
degrees of smallness

-2 Potentials are constructed from the matter variables

‘2- The only way that one metric theory differs from
another is in the numerical values of the coefficients
that appear in front of the metric potentials
>~ Current PPN formalism has |10 parameters

-2 Testing a metric theory of gravity amounts to

constraining the PPN parameters
Will, LRR
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Why compact binaries!?

-® Black holes and neutron stars are the most compact objects

-®- Surface potential energy of a test particle is equal to its rest mass
enerey GmM

R

-® Being the most compact objects, they are also the most
luminous sources of gravitational radiation

<

TR

+® The luminosity of a binary could increase a million times in the
course of its evolution through a detector’s sensitivity band

-® The luminosity of a merging binary black hole (no matter how

small or large) outshines the luminosity in all visible matter in the
Universe
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BBH Signals as Testbeds for GR

-®* Gravity gets ultra-strong during a BBH merger compared
to any observations in the solar system or in binary pulsars

+®" In the solar system: p/c2 ~ 107
2 Ina binary pulsar it is still very small: ¢p/c? ~ 10
-® Near a black hole @/c? ~ 1

-® Merging binary black holes are the best systems for
strong-field tests of GR

-®- Dissipative predictions of gravity are not even tested at the
PN level

+®- In binary black holes even (v/c)” PN terms might not be
adequate for high-SNR (~100) events
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Future tests of GR
with GVWV observations




Testing GR with a compact binary: How does a
binary pulsar test GR?

-® Non-orbital parameters

-®- position of the pulsar on the sky; period of the pulsar and its rate of
change

-® Five Keplerian parameters, e.g.
-® Eccentricity e
-®- Orbital period P,

+®- Semi-major axis projected along the line of sight a, sin i

-®" Five post-Keplerian parameters
-®- Average rate of periastron advance <dw/dt>
-® Amplitude of delays in arrival of pulses y
-®- Rate of change of orbital period dP,/dt

-® “range” and “shape” of the Shapiro time delay
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Measured effects depend only on the two
masses of the binary

‘2~ Average rate of periastron advance

s 67 fo (2 M fp)%/3
i A (l - (.‘.’2)

-2~ Amplitude of delays in arrival times
. (27 M £,)2/3 ems (1 & 7112>

orfy M M

‘2~ Rate of change of the orbital period
: 192 A ‘
P, = — - (2n M f,)°/°F (€)
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Test of GR in PSR 1913+16
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Bound on )\g as a function of total mass

-2 Limits based on GW
observations will be
five orders-of-
magnitude better
than solar system
limits

-2 Still not as good as
(model-dependent)
limits based on
dynamics of galaxy
clusters
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Arun and Will (2009)
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Improving bounds with IMR Signals

Keppel and Ajith (2010)

-2~ By including the merger
and ringdown part of
the coalescence it is
possible to improve the
bound on graviton
wavelength

-2~ Equal mass compact
binaries assumed to be
at 1 Gpc

-2~ ET can achieve 2 to 3
orders of magnitude
better bound than the
best possible model-
independent bounds
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Testing the tail effect

Gravitational wave tails Testing the presence of tails

35
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Testing general relativity with post-
Newtonian theory

Post-Newtonian expansion of orbital phase of a binary
contains terms which all depend on the two masses of
the binary

A(M, v, angles) . ..

H(f) = =—p——f " exp [=it\(/)]

U(f) =2aftc+pc+ Y _ i fE
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Testing general relativity with
post-Newtonian theory

-2~ Post-Newtonian expansion of orbital phase of
a binary contains terms which all depend on

the two masses of the binary

Wy = (71\[_)(1‘ ""-""’(1',‘.(_1/)

128°
-2 Different terms arise because of different
physical effects
-~ Measuring any two of these will fix the masses

-2~ Other parameters will have to consistent with
the first two

Arun, lyer, Qusailah, Sathyaprakash (20064, b)
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Testing post-Newtonian theory

Arun, lyer, Qusailah, Sathyaprakash (2006a, b)
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Confirming the presence of tail- and log-
terms with Advanced LIGO

AdvLigo; q_=0.1; F,_ =20Hz; D, =300Mpc AdvLigo; q_=0.1; F, =20Hz; D =300Mpc
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ModeI:RWF;qm=0.1 ;ET-B;F|0W=1 Hz;DL=300MpC
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PN parameter accuracies with ET
|0 Hz lower cutoff

Model:RWF;q_=0.1;ET-B;F,_ =10Hz;D, =300Mpc
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Test as seen in the plane of component masses

Model=FWF; g _=0.1; D, =300Mpc; ET-B; F, =1Hz
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Power of a PN Test

"&'Suppose the GR k™ PN coefficient is gi(m1,m2) while
the true £ PN coefficient is pi(m1,m>)

-® The “measured value of the k™" PN coefficient is, say, po

-® The curve gi(m1,m2)= poin the (m1,mz) plane will not
pass through the masses determined from the other
parameters

Arun, Mishra, lyer, Sathyaprakash (2010)
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Power of the PPN test

Effect of changing the coefficients 1, and ¢, by 1% on the test.
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Arun, Mishra, lyer, Sathyaprakash (2010)
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Efficacy of the PPN Test

Effect of changing the coefficients 1, and ¢, by 1% on the test.
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Conclusions

-»-ET could put interesting bounds on the mass of
gravitons

+®- Could surpass the model-independent solar systems bounds
by several orders of magnitude

"&'Gravitational-wave observations offer new tests of
general relativity in the dissipative strongly non-linear
regime

-2 Advanced LIGO can already test tails of gravitational waves
and the presence of the log-term in the PN expansion

-®- Einstein Telescope will measure all known PN coefficients
(except one at 2PN order) to a good accuracy
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