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Goal of the talk
To show that gravitational-wave observations of 
compact binaries offer the best possible tests of 
general relativity, indeed any metric theory of 
gravity, beyond the solar system tests and binary 
pulsar tests.
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Gravity's Standard Sirens 

A metric theory of gravity
Tests of the equivalence principle have confirmed that the only 
possible theories of gravity are the so-called metric theories
A metric theory of gravity is one in which

there exists a symmetric metric tensor
test bodies follow geodesics of this metric
in local Lorentz frames, non-gravitational laws of physics are those of 
special relativity
All non-gravitational fields couple in the same manner to a single 
gravitational field - that is “universal coupling”

Metric is a property of the spacetime

The only gravitational field that enters the equations of 
motion is the metric

Other fields (scalar, vector, etc.) may generate the spacetime curvature 
associated with the metric but they cannot directly influence the 
equations of motion

Will, LRR
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Parametrized post-Newtonian 
formalism

In slow-motion, weak-field limit all metric theories of 
gravity have the same structure

Can be written as an expansion about the Minkowski metric in 
terms of dimensionless gravitational potentials of varying 
degrees of smallness

Potentials are constructed from the matter variables
The only way that one metric theory differs from 
another is in the numerical values of the coefficients 
that appear in front of the metric potentials

Current PPN formalism has 10 parameters

Testing a metric theory of gravity amounts to 
constraining the PPN parameters

Will, LRR
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Why compact binaries?
Black holes and neutron stars are the most compact objects

Surface potential energy of a test particle is equal to its rest mass 
energy

Being the most compact objects, they are also the most 
luminous sources of gravitational radiation

The luminosity of a binary could increase a million times in the 
course of its evolution through a detector’s sensitivity band

The luminosity of a merging binary black hole (no matter how 
small or large) outshines the luminosity in all visible matter in the 
Universe
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BBH Signals as Testbeds for GR

Gravity gets ultra-strong during a BBH merger compared 
to any observations in the solar system or in binary pulsars

In the solar system: φ/c2 ~ 10-6 

In a binary pulsar it is still very small: φ/c2 ~ 10-4 

Near a black hole φ/c2 ~ 1
Merging binary black holes are the best systems for 
strong-field tests of GR

Dissipative predictions of gravity are not even tested at the 
1PN level

In binary black holes even (v/c)7 PN terms might not be 
adequate for high-SNR (~100) events
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Future tests of GR 
with GW observations
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Testing GR with a compact binary: How does a 
binary pulsar test GR?

Non-orbital parameters
position of the pulsar on the sky; period of the pulsar and its rate of 
change

Five Keplerian parameters, e.g.
Eccentricity e

Orbital period Pb

Semi-major axis projected along the line of sight ap sin i

Five post-Keplerian parameters
Average rate of periastron advance <dω/dt>

Amplitude of delays in arrival of pulses γ

Rate of change of orbital period dPb/dt

“range” and “shape” of the Shapiro time delay
8
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Average rate of periastron advance

Amplitude of delays in arrival times

Rate of change of the orbital period

Measured effects depend only on the two 
masses of the binary
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Test of GR in PSR 1913+16
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Berti, Buonanno and Will (2006)Gravity's Standard Sirens 

Bound on λg as a function of total mass
Limits based on GW 
observations will be 
five orders-of-
magnitude better 
than solar system 
limits

Still not as good as 
(model-dependent) 
limits based on 
dynamics of galaxy 
clusters

Wednesday, 1 September 2010



Gravity's Standard Sirens 

Bounding the mass of the graviton 4
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Figure 1. Bounds on the graviton Compton wavelength that can be deduced from
AdvLIGO, Einstein Telescope and LISA. The mass ratio is 2. The distance to the
source is assumed to be 100 Mpc for AdvLIGO and ET, and 3 Gpc for LISA.

ET and LISA are plotted as a function of the total mass of the binary for a fixed mass

ratio of m2/m1 = 2. For AdvLIGO and ET, the source is assumed to be at a luminosity

distance of 100 Mpc and for LISA the SMBH binary is assumed to be 3 Gpc away.

The bounds from the Newtonian RWF and 3PN FWF are compared. Inclusion of

amplitude corrections and the higher harmonics improve the bounds for both ground-

based configurations and at the high-mass end for LISA. The improvement is more
than an order of magnitude for heavier binaries, because higher harmonics play a more

prominent role for such systems. Typical bounds, with the use of higher harmonics,

for AdvLIGO, ET and LISA are 1012 km, 1013 km and 1016 km, respectively. The best

bound, not surprisingly, will be provided by LISA, thanks to its low frequency sensitivity,

to the high signal-to-noise ratios with which it will be observing the supermassive binary

black hole coalescences, and to the very large distances involved. Though our results
are for a specific location and orientation of the binary, we have verified that the bounds

are not significantly altered by different source positions and orientations.

The remainder of the paper provides details underlying these results. In Sec. 2, we

describe the full-waveform model used, the noise curves for the various detectors, and

the technique of matched filtering. Section 3 details the bounds obtainable from the

various detectors.

Arun and Will (2009)
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Gravity's Standard Sirens 

Improving bounds with IMR Signals
By including the merger 
and ringdown part of 
the coalescence it is 
possible to improve the 
bound on graviton 
wavelength
Equal mass compact 
binaries assumed to be 
at 1 Gpc
ET can achieve 2 to 3 
orders of magnitude 
better bound than the 
best possible model-
independent bounds

2

FIG. 1. Left. Optimal SNR (bottom panels) and the lower bound on the Compton wavelength !g of graviton (top panels) from equal-mass

binaries located at 1 Gpc detected in the Adv. LIGO (black traces) and ET (grey traces) detectors using their smallest low-frequency cutoffs

(10 Hz and 1 Hz, respectively). Horizontal axes report the total mass of the binary. Solid and dashed lines correspond to IMR and restricted

3.5PN waveforms, respectively. Right. Same plots for the case of binaries located at 3 Gpc detected in the LISA detector.

graviton can be placed from the GW observations by applying

appropriate matched filters.

Will’s original work was performed using restricted PN

waveforms describing the inspiral stage of non-spinning coa-

lescing compact binaries, the phase of which was expanded to

1.5PN order. Recent work has elaborated on this by incorpo-

rating more accurate detector models, and by including more

physical effects such as effects rising from the spin angular

momentum of the compact objects, from the eccentricity of

the orbit, and from the inclusion of higher harmonics rising

from the contribution of the higher multipoles [14–20].

Since the PN formalism has enabled us to compute accurate

waveforms from the inspiral stage of the coalescence, these

analyses have focused on the information gained from the ob-

servation of the inspiral stage. The last few years have wit-

nessed a revolution in the numerical simulations of compact

binaries. In particular, numerical relativity was able to obtain

exact solutions for the “binary-black-hole problem” [21–23].

Concomitant with this great leap has been significant progress

in analytical relativity in the computation of high order PN

terms and the inclusion of various effects arising from spins,

higher harmonics etc. Combining the analytical and numer-

ical results, different ways of constructing inspiral-merger-

ring-down (IMR) waveforms have been proposed [24–26]. It

has been widely recognized that these IMR waveforms will

significantly improve the sensitivity and distance reach of the

searches for BBHs (see, e.g., [24, 27, 28]) as well as the accu-

racy of the parameter estimation (see, e.g., [29–31]).

In this paper, we estimate the bounds that can be placed on

the mass of graviton from the GW observations of BBHs us-

ing IMR templates. This is motivated by the previous observa-

tions (see e.g. [29]) that the IMR waveforms will significantly

improve the accuracy of the parameter estimation by breaking

the degeneracies between the different parameters describing

the signal, including the parameter describing the mass of the

graviton.

Due to the intrinsic randomness of the noise in the GW

data, the estimated parameters of the binary (including the

one parameter describing the mass of the graviton) will fluc-

tuate around their mean values. In the limit of high signal-

to-noise ratios (SNRs), the spread of the distribution of the

observed parameters— the accuracy of the parameter estima-

tion — is quantified by the inverse of the Fisher information

matrix [32, 33]. We employ the Fisher matrix formalism to es-

timate the expected bounds on the mass of the graviton using

the non-spinning limit of the IMR waveform model proposed

by Ref. [34]. This is a frequency-domain waveform family

describing the leading harmonic of the IMR waveforms from

BBHs. In this work, we focus on the statistical errors, and

neglect the possible systematic errors rising from not incor-

porating the effects from spins and higher harmonics in our

signal model.

The main findings of the paper are summarized below (Sec-

tion I A). The following sections present the details of the

analysis. Section II briefly reviews the effect of massive gravi-

ton on the dispersion of GWs, and summarizes the existing

bounds on the graviton mass. In Section III, we compute the

expected upper bounds that can be placed on the mass of the

graviton using the observations of IMR signals. In that sec-

tion, we review the signal and detector models used, provide

the details of the computation and present a discussion of the

results and the limitations of this work.

A. Summary of results

An executive summary of results is presented in Fig. 1

for the case of ground-based detectors Adv. LIGO and ET

as well as the space-borne detector LISA. For ground-based

detectors, the binary is assumed to be located optimally ori-

ented at 1 Gpc, and for LISA, the binary is located at 3

Gpc. For the case of Adv. LIGO (with low-frequency cutoff,

RWF

IMR

Keppel and Ajith (2010)
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Testing the tail effect
Gravitational wave tails Testing the presence of tails

Blanchet and Schaefer (1994) Blanchet and Sathyaprakash (1995)
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Testing general relativity with post-
Newtonian theory

Post-Newtonian expansion of orbital phase of a binary 
contains terms which all depend on the two masses of 
the binary

Wednesday, 1 September 2010



Gravity's Standard Sirens 

Post-Newtonian expansion of orbital phase of 
a binary contains terms which all depend on 
the two masses of the binary

Different terms arise because of different 
physical effects
Measuring any two of these will fix the masses
Other parameters will have to consistent with 
the first two

Testing general relativity with 
post-Newtonian theory

Arun, Iyer, Qusailah, Sathyaprakash (2006a, b)
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Testing post-Newtonian theory
Arun, Iyer, Qusailah, Sathyaprakash (2006a, b)
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Confirming the presence of tail- and log-
terms with Advanced LIGO
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PN parameter accuracies with ET
1 Hz lower cutoff
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FIG. 4: Plots showing the variation of relative errors ∆ψT /ψT in the test parameters ψT=ψ3, ψ4, ψ5l, ψ6, ψ6l, ψ7 as a function of total mass M
for stellar mass black hole binaries (with component masses having mass ratio 0.1) at a luminosity distance of DL = 300 Mpc observed by

ET, using both RWF (left panels) and FWF (right panels) as waveform models. The choice of the source orientations is the same as quoted

in Fig. 3. The noise curve corresponds to the recent ET-B sensitivity curve. Top panels correspond to the lower frequency cutoff of 1 Hz.

By using FWF as the waveform model all ψk’s except ψ4 can be tested with fractional accuracy better than 2% in the mass range 11-44M!.

Bottom panels correspond to the lower frequency cutoff of 10 Hz. Using FWF, all ψk’s except ψ4 can be tested with fractional accuracy better
than 7% in the mass range 11-44M!.

termediate mass BBHs using ET. In addition to this we will

discuss some other key issues influencing the results such as

effects of PN systematics on the test, choice of parametriza-

tion and dependence of the test on angular parameters.

1. Stellar mass black-hole binaries

Fig. 4 plots the relative errors ∆ψT /ψT as a function of total
mass M of the binary at a distance of DL = 300 Mpc. We have

considered stellar mass BBHs of unequal masses and mass ra-

tio 0.1, with the total mass in the range 11-44M!. Fig. 4 also
shows two types of comparisons: (a) Full waveform (FWF) vs

Restricted waveform (RWF), (b) a lower frequency cutoff of

10 Hz vs 1 Hz. The top and bottom panels correspond to the

lower frequency cutoff of 1 Hz and 10 Hz, respectively, while

the left and right panels correspond to the RWF and FWF, re-

spectively. The source orientations are chosen arbitrarily to be

θ = φ = π/6, ψ = π/4, ι = π/3. It should be evident from the
plots that the best estimates of various test parameters are for

the combination using the FWF with a lower cutoff frequency

of 1 Hz. In this case, all ψ′
i
s except ψ4 can be measured with

Arun, Mishra, Iyer, Sathyaprakash (2010)
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FIG. 4: Plots showing the variation of relative errors ∆ψT /ψT in the test parameters ψT=ψ3, ψ4, ψ5l, ψ6, ψ6l, ψ7 as a function of total mass M
for stellar mass black hole binaries (with component masses having mass ratio 0.1) at a luminosity distance of DL = 300 Mpc observed by

ET, using both RWF (left panels) and FWF (right panels) as waveform models. The choice of the source orientations is the same as quoted

in Fig. 3. The noise curve corresponds to the recent ET-B sensitivity curve. Top panels correspond to the lower frequency cutoff of 1 Hz.

By using FWF as the waveform model all ψk’s except ψ4 can be tested with fractional accuracy better than 2% in the mass range 11-44M!.

Bottom panels correspond to the lower frequency cutoff of 10 Hz. Using FWF, all ψk’s except ψ4 can be tested with fractional accuracy better
than 7% in the mass range 11-44M!.

termediate mass BBHs using ET. In addition to this we will

discuss some other key issues influencing the results such as

effects of PN systematics on the test, choice of parametriza-

tion and dependence of the test on angular parameters.

1. Stellar mass black-hole binaries

Fig. 4 plots the relative errors ∆ψT /ψT as a function of total
mass M of the binary at a distance of DL = 300 Mpc. We have

considered stellar mass BBHs of unequal masses and mass ra-

tio 0.1, with the total mass in the range 11-44M!. Fig. 4 also
shows two types of comparisons: (a) Full waveform (FWF) vs

Restricted waveform (RWF), (b) a lower frequency cutoff of

10 Hz vs 1 Hz. The top and bottom panels correspond to the

lower frequency cutoff of 1 Hz and 10 Hz, respectively, while

the left and right panels correspond to the RWF and FWF, re-

spectively. The source orientations are chosen arbitrarily to be

θ = φ = π/6, ψ = π/4, ι = π/3. It should be evident from the
plots that the best estimates of various test parameters are for

the combination using the FWF with a lower cutoff frequency

of 1 Hz. In this case, all ψ′
i
s except ψ4 can be measured with

PN parameter accuracies with ET
10 Hz lower cutoff

Arun, Mishra, Iyer, Sathyaprakash (2010)
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Test as seen in the plane of component masses10
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FIG. 5: Plots showing the regions in the m1-m2 plane that corresponds to 1-σ uncertainties in ψ0, ψ2 and various test parameters, which happen
to be one of the six test parameters ψT = ψ3,ψ4,ψ5l,ψ6,ψ6l,ψ7 at one time, for a (2, 20) M! BBH at a luminosity distance of DL = 300 Mpc

observed by ET. In all the six plots shown above ψ0 and ψ2 are chosen as the fundamental parameters (from which we can measure the masses
of the two black holes). Each parameter corresponds to a given region in the m1-m2-plane and if GR is the correct theory of gravity then all

three parameters, ψ0, ψ2 and ψT should have a non-empty intersection in the m1-m2 plane. A smaller region leads to a stronger test. Notice that
all panels have the same scaling except the top middle panel in which Y axis has been scaled by a factor 10.

fractional accuracies better that 2% for the total mass in the

range 11-44M!. On the other hand when the lower cutoff is
10 Hz, with the FWF all ψ′

i
s except ψ4 can be measured with

fractional accuracies better than 7%. It is also evident from the

plots that as compared to other test parameters, ψ3 is the most
accurately measured parameter in all cases and best estimated

when the lower frequency cutoff is 1 Hz. On the other hand,

ψ4 is the worst measured parameter of all the test parameters.
However, we see the best improvement in its measurement

when going from the RWF to the FWF.

Fig. 5 shows the regions in the m1-m2 plane that corre-

sponds to 1-σ uncertainties in ψ0, ψ2 and various test pa-
rameters which in turn will be one of the six test parameters

ψT = ψ3,ψ4,ψ5l,ψ6,ψ6l,ψ7, one at a time, for a (2, 20) M!
BBH, at a luminosity distance of DL = 300 Mpc observed by

ET. It is evident from the plots corresponding to various tests

that each test parameter is consistent with corresponding fun-

damental pair (ψ0, ψ2).

2. Intermediate mass black hole binaries

Fig. 6 plots the relative errors ∆ψT/ψT as a function of the
total massM of the binary at a distance ofDL=3Gpc. We have

considered BBH of unequal masses with mass ratio 0.1. As in

Fig. 4, Fig. 6 also shows two types of comparisons: (a) Ef-

fect of the use of FWF on parameter estimation against RWF,

(b) Effect of lowering the cutoff frequency from 10 Hz to 1

Hz. As before, top and bottom panels correspond to the cut-

off frequency of 1 Hz and 10 Hz, respectively, and left and

right panels to RWF and FWF, respectively. The source ori-

entations are chosen arbitrarily to be θ = φ = π/6, ψ = π/4,
ι = π/3.

It is evident from the plots that the least relative errors in

various test parameters are for the combination that uses the

FWF and a lower cutoff of 1 Hz. Unlike the case of stel-

lar mass BBHs, in the case of intermediate mass BBHs only

two of the test parameters, ψ3 and ψ5l, can be measured with
fractional accuracies better that 10% for the total mass in the

Wednesday, 1 September 2010



Power of a PN Test
Suppose the GR kth PN coefficient is qk(m1,m2) while 
the true kth PN coefficient is pk(m1,m2) 

The “measured value of the kth PN coefficient is, say, p0

The curve qk(m1,m2)= p0 in the (m1,m2) plane will not 
pass through the masses determined from the other 
parameters

22
Arun, Mishra, Iyer, Sathyaprakash (2010)
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Power of the PPN test

23
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Efficacy of the PPN Test
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Conclusions
ET could put interesting bounds on the mass of 
gravitons

Could surpass the model-independent solar systems bounds 
by several orders of magnitude

Gravitational-wave observations offer new tests of 
general relativity in the dissipative strongly non-linear 
regime

Advanced LIGO can already test tails of gravitational waves 
and the presence of the log-term in the PN expansion

Einstein Telescope will measure all known PN coefficients 
(except one at 2PN order) to a good accuracy

25

Wednesday, 1 September 2010


