What can we learn about neutron stars from binary neutron star coalescences?

Jocelyn Read

Max Planck Institute for Gravitational Physics

1 Sept 2010

Jocelyn Read (AEI)

What can we learn about neutron stars from

1/09/10 1 / 20

```
Inspiral strength in ET
```


What can we learn from the strongest signals?

Can we measure additional astrophysically relevant parameters directly from a gravitational wave event?

The early inspiral point-particle model is characterized by the masses of the stars: ET will see many signals \rightarrow learn about neutron star populations, formation scenarios, mass ranges...

This talk focuses on additional details that may be visible in strong signals: modifications to the late inspiral, and the coalescence and post-coalescence waveforms themselves.

I'm almost entirely going to talk about the cold EOS.

Strong inspiral signal from binary neutron stars

Modification to inspiral

Tidal deformability λ for realistic EOS

 $\lambda = \frac{Q}{\mathcal{E}} = \frac{\text{size of quadrupole deformation}}{\text{strength of external tidal field}}$

$$\lambda = \frac{2}{3}k_2R^5$$

Calculate via linear Y_{20} perturbation of spherical neutron star Q and \mathcal{E} defined by external field of perturbed star

Incorporate resulting corrections to energy and GW luminosity into post-Newtonian waveforms

Measuring tidal deformability λ

Each thick line: a candidate equation of state gives λ as function of mass.

shaded: Uncertainty in estimating λ for Advanced LIGO and ET using "clean" waveform: below 450 Hz only

T Hinderer, B Lackey, R Lang, JR arXiv:0911.3535

Measuring tidal deformability λ

Each thick line: a candidate equation of state gives λ as function of mass.

shaded: Uncertainty in estimating λ for Advanced LIGO and ET using "clean" waveform: below 450 Hz only

T Hinderer, B Lackey, R Lang, JR arXiv:0911.3535

Measuring tidal deformability λ

Each thick line: a candidate equation of state gives λ as function of mass.

shaded: Uncertainty in estimating λ for Advanced LIGO and ET using "clean" waveform: below 450 Hz only

T Hinderer, B Lackey, R Lang, JR arXiv:0911.3535

Unequal mass binaries

Tidal effects on gravitational wave phase depend on a weighted average $\tilde{\lambda}(m,\eta)$ combining λ_1 for m_1 and λ_2 for m_2

Spin and η considered

Measurement using frequency band 10 Hz $\leq f \leq$ 450 Hz, at 100 Mpc, averaged over sky position and inclination.

Einstein Telescope

M (M_{\odot})	m_2/m_1	$\Delta M/M$	$\Delta \eta / \eta$	$\Delta\tilde{\lambda}(10^{36}\mathrm{gcm^2s^2})$	ρ
2.0	1.0	0.000015	0.0058	0.70	354
2.8	1.0	0.000021	0.0043	1.60	469
3.4	1.0	0.000025	0.0038	2.58	552
2.0	0.7	0.000015	0.0058	0.68	349
2.8	0.7	0.000021	0.0045	1.56	462
3.4	0.7	0.000025	0.0038	2.52	543
2.8	0.5	0.000020	0.0048	1.46	442

Signal from merger of binary neutron stars

Signal from merger of binary neutron stars

Requires numerical simulation

Additional relevant physics

- Cold EOS contribution includes higher-order tidal effects, other deformation modes, nonlinearity of deformations, approaches resonance with stellar modes
- Increased temperature from shock heating: hot EOS effects (e.g. Bauswein and Janka 2010)
- Magnetic field effects amplified, affect stability of hypermassive object (e.g. Giacomazzo, Rezzolla, and Baiotti 2009)
- Microphysics: particle production \rightarrow neutrino pressure

Systematic EOS exploration in BNS simulation

vary pressure scale

Jocelyn Read (AEI)

What can we learn about neutron stars from

1/09/10 12 / 20

Sar

Inspiral agreement: EOS B

Jocelyn Read (AEI)

What can we learn about neutron stars from

1/09/10 13 / 20

э

Inspiral agreement: EOS HB

Jocelyn Read (AEI)

What can we learn about neutron stars from

1/09/10 14 / 20

Merger agreement: EOS B

1/09/10 15 / 20

Merger agreement: EOS HB

1/09/10 16 / 20

Range of signals from varying EOS

Measurability estimates: EOS effects on inspiral

Construct hybrid waveforms: connect analytic waveform with tidal contributions to numerical inspiral

Measurability estimates require parameterization of signal: e.g. by EOS parameters, radius, or λ .

arXiv:0901.3258

point particle post-Newtonian and short numerical inspiral ρ of difference between simulated EOS ranges from 1 to 6 in ET $\Delta\lambda \sim 0.2$ from signal above 750 Hz in ET (compare ~ 1.6 from early inspiral only)

Measurability of merger and post-merger?

Waveforms after peak amplitude:

These estimates are dependent on the stability of the PMO_{\equiv} ,

EM observations are also constraining the EOS

Three X-ray bursters + thermal emission from transiant LMXBs + cooling of an isolated neutron star. (Steiner et. al. 2010, 1005.0811)

< □ > < 同 > < 回 > .