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Overview
§ If progenitors of short-hard gamma ray bursts (GRBs) are mergers of 

binary neutron stars (or of neutron star - black hole binaries) then they 
would be powerful "standard sirens" for doing cosmology with ET
(Sathyaprakash, Schutz, CVDB, arXiv:0906.4151)

More recently:

§ Drop 3 simplifying assumptions in earlier work:

● All "useful sources" are seen face-on (tight beaming of GRB)

● Distribution of sources uniform in (co-moving) volume

● Not all parameters can be measured at once, so some assumed 
known with near-perfect accuracy from previous measurements 

         

      (W. Zhao, D. Baskaran, T. Li, CVDB, in preparation)
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Cosmography with binary inspirals 
§ Standard candle in cosmology: source for which intrinsic luminosity 

approximately known; can be used to measure distance

§ If redshift also known, exploit d
L
(z) relationship to probe geometry of 

the Universe

§ Example: Type Ia supernovae 

§ Problem:  need for calibration using closer-by sources

"Cosmic distance ladder"
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Cosmography with binary inspirals 
§ Schutz '86: Use GW signals from binary inspirals:

● Amplitude depends on masses, position/orientation, distance

● Masses obtained separately from phasing 

● If position/orientation can be obtained, can get distance without 
recourse to other sources!

"Standard sirens"

§ LISA: 

● Use binary supermassive black holes

● Position/orientation from Doppler modulation of the signal due to 
probes' motion around Sun 

§ Ground-based: 

● Use inspirals involving at least one neutron star  EM counterpart
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Cosmography with binary inspirals
§ Binary neutron stars believed to cause 

short, hard gamma ray bursts

● Get sky position

● Network of GW detectors (even if co-
located): information on orientation of 
binary

 (θ,φ,ψ,ι)

 Distance information from GW signal

● Identify host galaxy: get redshift 

 Probe d
L
(z)

● Advanced LIGO

– Hubble constant to a few percent    

        Nissanke et al., arXiv:0904.1017  

● Einstein Telescope

– Hubble constant

– Density of matter, dark energy

– Dark energy equation-of-state

     Sathyaprakash, Schutz, CVDB, arXiv:0906.4151
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Dark energy and its evolution
§ SNIa measurements: expansion of the Universe appears to be accelerating

● GR incorrect at large length scales?

● Cosmological constant?

● New field, "dark energy", with 

– positive density 

– negative pressure

§ Dark energy equation-of-state (EOS):

                      w = p
de

/ρ
de     

< 0

● If w = -1 then cosmological constant, but current observational 
constraints still too loose

● Does w have time dependence, and can it be measured with ET?

     How would ET compare with other methods for studying cosmography? 
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Dark energy and its evolution
§ Interested in late-time evolution of universe where anomalous speeding-up of 

expansion is apparent

§ Phenomenological form for EOS of dark energy:

§ d
L
(z) relation then depends on 

                                                density of matter normalized to critical density

                                                effect of spatial curvature

                                                Hubble constant

                                                dark energy EOS at current epoch

                                                time dependence of dark energy EOS
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Uncertainties on the distance measurement
§ Luminosity distance uncertainty receives contributions from:

● Error due to instrumental noise, σ
inst

● Error due to weak lensing, σ
lens

Δd
L
/d

L 
= (σ

inst

2 + σ
lens

2)1/2

§ Weak lensing error  σ
lens 

~ 0.05 z

§ Instrumental error:

● "Strong beaming case": GRB beaming so strong that one can assume 
inclination angle i = 0 for all practical purposes. Compute errors using 
Fisher matrix, average over sky position:              

σ
inst 

≈ 0.065 z

● "Realistic case": beam angles up to 40o, so include inclination and 
polarization angles (i,ψ) in Fisher analysis, then angle-average over 
sky position and orientation but with constraint i < 20o : 

                     σ
inst 

≈ 0.12 z
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Distribution of sources
§ Population of ~1000 "useful" events over several years; up to z ~ 2

§ Distribution of sources over redshift:

● uniform in co-moving volume 

● (crude) fit to Scheider et al. (2001) 
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Basic method
§ Parameters to be measured:

§ Assuming distance errors are Gaussian distributed for individual sources in 
the population, construct Fisher matrix for cosmological parameters:

                  Derivatives w.r.t. the parameters (i, j = 1, ..., 5)

     Sum over the sources (k = 1, ..., 1000)

§ Measurement uncertainties on the parameters:
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Measurement accuracies from GW alone
§ If all parameters estimated together, large errors for most:

§ Assume that, e.g.,                     already measured by other means, and leave 
only               free:

§ Or, make assumption on values of                 and leave                       free: 

Want to be more concrete concerning prior information  
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Using the Planck CMB prior
§ Can use temperature and polarization anisotropies in the Cosmic Microwave 

Background (CMB) for prior information on

§ Assume predicted accuracies for Planck

§ Fisher matrix: 

§ Marginalize so that it refers only to

§ Measurement uncertainties

§ Results:   

CMB will not significantly constrain               but can provide a prior on            
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Using the Planck CMB prior
§ Add Fisher matrices from GW and CMB measurements to find a combined 

Fisher matrix

§ Inverse gives uncertainties from combined GW and CMB observations:

Compare with assumption that                        known with essentially no error: 
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Comparison with supernovae observations
§ Observations of SNIa also need to be supplemented with other information 

(e.g., CMB) in order to give information about

§ Consider future SNAP (SuperNova/Acceleration Probe)

● 300 low redshift sources (0.03 < z < 0.08)

● 2000 high redshift sources (0.1 < z < 1.7)

§ Also combine with predicted Planck CMB accuracies, then 

§ Compare with GW + CMB:

Note once again: GW standard sirens are self-calibrating
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Comparison with other observations

GW+CMB+SNIa+BAO:  

Zhao, Baskaran, Li, CVDB, in preparation
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§ Measuring dark energy equation-of-state and its time-variability

                                                                                                                      (Zhao, Baskaran, Li, CVDB)

● Use of the predicted Planck CMB sensitivity as a "prior" for 
             is almost the same as assuming these are exactly 

known

● Allowing GRB beaming angles up to 40o degrades parameter 
estimation by factor ~2 

● GW+CMB gives essentially the same accuracies as future 
SNIa+CMB from SNAP and Planck, but no dependence on a 
cosmic distance ladder

● Combining multiple probes (GW+CMB+SNIa+BAO): 

         ... which is a 6% improvement on CMB+SNIa+BAO

Summary
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Part 2: ET-B versus ET-C
"Original" proposal (ET-B) versus xylophone (ET-C):
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Part 2: ET-B versus ET-C
Difference in SNR integrand:
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Effect of lower cut-off frequency
Detection rates:

      f
lower

 = 10 Hz 

     f
lower

 = 5 Hz, 1 Hz
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Improvement in parameter estimation in going to ET-C
(ET-C uncertainties) / (ET-B uncertainties):

f
lower

 = 10 Hz 

 f
lower

 = 5 Hz

     f
lower

 = 1 Hz

 

        


