Multi-messenger cosmology in the ET era: Some recent results

Chris Van Den Broeck

WG4 Meeting, Nice, France, 01/09/2010

Overview

 If progenitors of short-hard gamma ray bursts (GRBs) are mergers of binary neutron stars (or of neutron star - black hole binaries) then they would be powerful "standard sirens" for doing cosmology with ET (Sathyaprakash, Schutz, CVDB, arXiv:0906.4151)

More recently:

- Drop 3 simplifying assumptions in earlier work:
 - All "useful sources" are seen face-on (tight beaming of GRB)
 - Distribution of sources uniform in (co-moving) volume
 - Not all parameters can be measured at once, so some assumed known with near-perfect accuracy from previous measurements

(W. Zhao, D. Baskaran, T. Li, CVDB, in preparation)

Cosmography with binary inspirals

- Standard candle in cosmology: source for which intrinsic luminosity approximately known; can be used to measure distance
- If redshift also known, exploit d_L(z) relationship to probe geometry of the Universe
- Example: Type Ia supernovae

Problem: need for calibration using closer-by sources

"Cosmic distance ladder"

Cosmography with binary inspirals

Schutz '86: Use GW signals from binary inspirals:

$$A(t) = \frac{\left[\mathcal{M}_{c}(m_{1}, m_{2})\right]^{5/3}}{D_{\rm L}} f(\theta, \phi, \psi, \iota) \left[F(t)\right]^{2/3}$$

- Amplitude depends on masses, position/orientation, distance
- Masses obtained separately from *phasing*
- If position/orientation can be obtained, can get distance without recourse to other sources!

"Standard sirens"

- LISA:
 - Use binary supermassive black holes
 - Position/orientation from Doppler modulation of the signal due to probes' motion around Sun
- Ground-based:
 - Use inspirals involving at least one neutron star \rightarrow EM counterpart

Cosmography with binary inspirals

Binary neutron stars believed to cause short, hard gamma ray bursts

- Get sky position
- Network of GW detectors (even if colocated): information on orientation of binary
- \rightarrow ($\theta, \phi, \psi, \iota$)
- \rightarrow **Distance** information from GW signal
 - Identify host galaxy: get redshift
- \rightarrow Probe d₁(z)
- Advanced LIGO
 - Hubble constant to a few percent
 Nissanke et al., arXiv:0904.1017

- Einstein Telescope
 - Hubble constant
 - Density of matter, dark energy
 - Dark energy equation-of-state

Sathyaprakash, Schutz, CVDB, arXiv:0906.4151

Dark energy and its evolution

SNIa measurements: expansion of the Universe appears to be accelerating

- GR incorrect at large length scales?
- Cosmological constant?
- New field, "dark energy", with
 - positive density
 - negative pressure

Dark energy equation-of-state (EOS):

 $w = p_{de}^{\prime}/\rho_{de}^{\prime} < 0$

- If w = -1 then cosmological constant, but current observational constraints still too loose
- Does w have *time dependence*, and can it be measured with ET?

How would ET compare with other methods for studying cosmography?

Dark energy and its evolution

Interested in late-time evolution of universe where anomalous speeding-up of expansion is apparent

Phenomenological form for EOS of dark energy:

$$w(z) \equiv p_{de}/\rho_{de} = w_0 + w_a(1-a) + \mathcal{O}\left[(1-a)^2\right]$$

 $\simeq w_0 + w_a \frac{z}{1+z}$

 $d_{1}(z)$ relation then depends on

$\Omega_m \equiv 8\pi G \rho_{m,0}/3H_0^2$	density of matter normalized to critical density
$\Omega_k \equiv -k/H_0^2$	effect of spatial curvature
H_0	Hubble constant
w_0	dark energy EOS at current epoch
w_a	time dependence of dark energy EOS

Uncertainties on the distance measurement

Luminosity distance uncertainty receives contributions from:

- Error due to instrumental noise, σ_{inst}
- Error due to weak lensing, σ_{lens}

 $\Delta d_{L}^{\prime}/d_{L}^{} = (\sigma_{inst}^{2} + \sigma_{lens}^{2})^{1/2}$

- Weak lensing error $\sigma_{lens} \sim 0.05 \text{ z}$
- Instrumental error:
 - "Strong beaming case": GRB beaming so strong that one can assume inclination angle i = 0 for all practical purposes. Compute errors using Fisher matrix, average over sky position:

 $\sigma_{inst} \approx 0.065 \text{ z}$

 "Realistic case": beam angles up to 40°, so include inclination and polarization angles (i,ψ) in Fisher analysis, then angle-average over sky position *and* orientation but with constraint i < 20°:

Distribution of sources

Population of ~1000 "useful" events over several years; up to $z \sim 2$

Distribution of sources over redshift:

- uniform in co-moving volume
- (crude) fit to Scheider et al. (2001)

Basic method

Parameters to be measured:

 $(w_0, w_a, \Omega_m, \Omega_k, h_0)$

Assuming distance errors are Gaussian distributed for individual sources in the population, construct Fisher matrix for cosmological parameters:

Derivatives w.r.t. the parameters (i, j = 1, ..., 5)

$$F_{ij}^{\text{GW}} = \sum_{k} \frac{\partial_i (\ln d_L(z_k)) \partial_j (\ln d_L(z_k))}{(\Delta \ln d_L(z_k))^2}$$

Sum over the sources (k = 1, ..., 1000)

Measurement uncertainties on the parameters:

$$\Delta p_i = \sqrt{(F^{\rm GW})^{-1}_{\ ii}}$$

Measurement accuracies from GW alone

If all parameters estimated together, large errors for most:

 $\Delta w_0 = 1.69, \ \Delta w_a = 5.95, \ \Delta \Omega_m = 0.514, \ \Delta \Omega_k = 1.30, \ \Delta h_0 = 7.00 \times 10^{-3}$

Assume that, e.g., $(\Omega_m, \Omega_k, h_0)$ already measured by other means, and leave only (w_0, w_a) free:

 $\Delta w_0 = 0.039, \ \Delta w_a = 0.244$

Or, make assumption on values of (w_0, w_a) and leave $(\Omega_m, \Omega_k, h_0)$ free:

 $\Delta \Omega_m = 0.014, \ \Delta \Omega_k = 0.056, \ \Delta h_0 = 3.22 \times 10^{-3}$

Want to be more concrete concerning prior information

Using the Planck CMB prior

Can use temperature and polarization anisotropies in the Cosmic Microwave Background (CMB) for prior information on $(\Omega_m, \Omega_k, h_0)$

Assume predicted accuracies for Planck

Fisher matrix:

$$F_{ij}^{\text{CMB}} = \sum_{\ell=2}^{\ell_{\text{max}}} \sum_{XX',YY'} \frac{\partial C_{\ell}^{XX'}}{\partial p_i} \text{Cov}^{-1}(D_{\ell}^{XX'}, D_{\ell}^{YY'}) \frac{\partial C_{\ell}^{YY'}}{\partial p_j}$$

Marginalize so that it refers only to $(w_0, w_a, \Omega_m, \Omega_k, h_0)$

Measurement uncertainties $\Delta p_i = \sqrt{(F^{\text{CMB}})^{-1}_{ii}}$

Results:

 $\Delta w_0 = 0.411, \ \Delta w_a = 0.517, \ \Delta \Omega_m = 8.88 \times 10^{-2}, \ \Delta \Omega_k = 2.27 \times 10^{-3}, \ \Delta h_0 = 0.115.$

CMB will not significantly constrain (w_0, w_a) but can provide a prior on $(\Omega_m, \Omega_k, h_0)$

Using the Planck CMB prior

Add Fisher matrices from GW and CMB measurements to find a combined Fisher matrix

Inverse gives uncertainties from combined GW and CMB observations:

 $\Delta w_0 = 0.053, \ \Delta w_a = 0.197, \ \Delta \Omega_m = 3.69 \times 10^{-3}, \ \Delta \Omega_k = 6.47 \times 10^{-4}, \ \Delta h_0 = 3.67 \times 10^{-3}$

Compare with *assumption* that $(\Omega_m, \Omega_k, h_0)$ known with essentially no error:

$$\Delta w_0 = 0.039, \ \Delta w_a = 0.244$$

Comparison with supernovae observations

Observations of SNIa *also* need to be supplemented with other information (e.g., CMB) in order to give information about (w_0, w_a)

Consider future SNAP (SuperNova/Acceleration Probe)

- 300 low redshift sources (0.03 < z < 0.08)
- 2000 high redshift sources (0.1 < z < 1.7)

Also combine with predicted Planck CMB accuracies, then

 $\Delta w_0 = 0.051, \ \Delta w_a = 0.201, \ \Delta \Omega_m = 3.49 \times 10^{-3}, \ \Delta \Omega_k = 6.52 \times 10^{-4}, \ \Delta h_0 = 3.39 \times 10^{-3}$

Compare with GW + CMB:

 $\Delta w_0 = 0.053, \ \Delta w_a = 0.197, \ \Delta \Omega_m = 3.69 \times 10^{-3}, \ \Delta \Omega_k = 6.47 \times 10^{-4}, \ \Delta h_0 = 3.67 \times 10^{-3}$

Note once again: GW standard sirens are self-calibrating

Comparison with other observations

GW+CMB+SNIa+BAO: $\Delta w_0 = 0.045$, $\Delta w_a = 0.173$

Zhao, Baskaran, Li, CVDB, in preparation

Measuring dark energy equation-of-state and its time-variability (w_0, w_a)

(Zhao, Baskaran, Li, CVDB)

- Use of the predicted Planck CMB sensitivity as a "prior" for $(\Omega_m, \Omega_k, h_0)$ is almost the same as assuming these are exactly known
- Allowing GRB beaming angles up to 40° degrades parameter estimation by factor ~2
- GW+CMB gives essentially the same accuracies as future SNIa+CMB from SNAP and Planck, but *no dependence on a cosmic distance ladder*
- Combining multiple probes (GW+CMB+SNIa+BAO):

 $\Delta w_0 = 0.045, \ \Delta w_a = 0.173$

... which is a 6% improvement on CMB+SNIa+BAO

Part 2: ET-B versus ET-C

"Original" proposal (ET-B) versus xylophone (ET-C):

Part 2: ET-B versus ET-C

Difference in SNR integrand:

Effect of lower cut-off frequency

Detection rates:

 $f_{lower} = 10 \text{ Hz}$

Improvement in parameter estimation in going to ET-C

(ET-C uncertainties) / (ET-B uncertainties):

Model	Ω_M	Ω_{DE}	Ω_k	w_0	w_1
$\Omega_M, \ \Omega_{DE}, \ \Omega_k, \ w_0, \ w_1$	1.215	1.005	1.049	1.050	1.057
$\Omega_M, \ \Omega_{DE}, \ \Omega_k$	1.298	1.207	1.228	_	_
$\Omega_M, \ \Omega_{DE}, \ w_0, \ w_1$	1.104	1.096	_	1.186	1.207
$\Omega_M, \ \Omega_{DE}, \ w_0$	1.162	1.162	_	1.164	_
$\Omega_M, \ \Omega_{DE}$	1.178	1.178	_	_	_
w_0, w_1	_	_	_	1.158	1.183
w_0	_	_	_	1.151	-
Average relative improvement:	-15.11%				
Model	Ω_M	Ω_{DE}	Ω_k	w_0	w_1
$\Omega_M, \Omega_{DE}, \Omega_k, w_0, w_1$	0.813	0.992	0.967	0.923	0.989
$\Omega_M, \ \Omega_{DE}, \Omega_k$	0.777	0.826	0.810	_	_
$\Omega_M, \Omega_{DE}, w_0, w_1$	0.877	0.884	_	0.828	0.833
$\Omega_M, \Omega_{DE}, w_0$	0.815	0.815	_	0.830	_
Ω_M, Ω_{DE}	0.849	0.849	_	_	_
w_0, w_1	_	_	_	0.858	0.842
w_0	_	_	_	0.863	_
Average relative improvement:	13.75%				
Model	Ω_M	Ω_{DE}	Ω_k	w_0	w_1
$\Omega_M, \Omega_{DE}, \Omega_k, w_0, w_1$	0.805	0.993	0.967	0.914	0.969
$\Omega_M, \Omega_{DE}, \Omega_k$	0.765	0.816	0.799	_	_
$\Omega_M, \Omega_{DE}, w_0, w_1$	0.872	0.879	_	0.821	0.820
$\Omega_M, \Omega_{DE}, w_0$	0.804	0.804	_	0.819	_
Ω_M, Ω_{DE}	0.838	0.838	_	_	_
w_0, w_1	_	_	_	0.850	0.834
w_0	_	_	_	0.854	_
Average relative improvement:	14.66%				
	Model $\Omega_M, \Omega_{DE}, \Omega_k, w_0, w_1$ $\Omega_M, \Omega_{DE}, \Omega_k$ $\Omega_M, \Omega_{DE}, w_0, w_1$ $\Omega_M, \Omega_{DE}, w_0$ $\Omega_M, \Omega_{DE}, w_0$ w_0, w_1 w_0 Average relative improvement:Model $\Omega_M, \Omega_{DE}, \Omega_k, w_0, w_1$ $\Omega_M, \Omega_{DE}, \Omega_k$ $\Omega_M, \Omega_{DE}, w_0, w_1$ $\Omega_M, \Omega_{DE}, w_0, w_1$ $\Omega_M, \Omega_{DE}, w_0, w_1$ w_0 Average relative improvement:Model $\Omega_M, \Omega_{DE}, \Omega_k, w_0, w_1$ ω_0, w_1 w_0 $\Delta_M, \Omega_{DE}, \Omega_k, w_0, w_1$ $\Omega_M, \Omega_{DE}, w_0, w_1$ $\Omega_M, \Omega_{DE}, w_0, w_1$ $\Omega_M, \Omega_{DE}, w_0$ M_M, w_0 Average relative improvement:	Model Ω_M $\Omega_M, \Omega_{DE}, \Omega_k, w_0, w_1$ 1.215 $\Omega_M, \Omega_{DE}, \Omega_k$ 1.298 $\Omega_M, \Omega_{DE}, w_0, w_1$ 1.104 $\Omega_M, \Omega_{DE}, w_0$ 1.162 $\Omega_M, \Omega_{DE}, w_0$ 1.162 $\Omega_M, \Omega_{DE}, w_0$ - Average relative improvement: -15.11% Model Ω_M $\Omega_M, \Omega_{DE}, \Omega_k, w_0, w_1$ 0.813 $\Omega_M, \Omega_{DE}, \Omega_k, w_0, w_1$ 0.813 $\Omega_M, \Omega_{DE}, \omega_0, w_1$ 0.877 $\Omega_M, \Omega_{DE}, w_0, w_1$ 0.877 $\Omega_M, \Omega_{DE}, w_0$ 0.815 $\Omega_M, \Omega_{DE}, w_0$ 0.815 $\Omega_M, \Omega_{DE}, w_0$ 0.815 $\Omega_M, \Omega_{DE}, w_0, w_1$ 0.877 $Model$ Ω_M w_0, w_1 - w_0 - Average relative improvement: 13.75% Model Ω_M $\Omega_M, \Omega_{DE}, \Omega_k, w_0, w_1$ 0.805 $\Omega_M, \Omega_{DE}, w_0, w_1$ 0.872 $\Omega_M, \Omega_{DE}, w_0, w_1$ 0.872 $\Omega_M, \Omega_{DE}, w_0$ 0.838	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

f lower

lower

lower