

Sky-position reconstruction abilities for different ET geometries and layouts

Alexander Dietz Benoit Mours

- Overview: What is the goal
- Technical details
 - Detector network
 - Observed quantities
 - Methods used
- Preliminary results
 - Tests with S6 injections
 - Results for different ET configurations
- Outlook

- Overview: What is the goal
- Technical details
 - Detector network
 - Observed quantities
 - Methods used
- Preliminary results
 - Tests with S6 injections
 - Results for different ET configurations
- Outlook

- Investigate the ability of different ET geometries to reconstruct the sky position
 - Assume LV detectors exist with (enhanced) advanced configuration
 - Using ET's in different locations, lengths, L-shape, triangle, ...
 - Using a 'signal'
 - Output: area on the sky

- Overview: What is the goal
- Technical details
 - Detector network
 - Observed quantities
 - Methods used
- Preliminary results
 - Tests with S6 injections
 - Results for different ET configurations
- Outlook

Technical Implementation

- Using self-made code: pyET.py
 - Can choose noise curve (LIGO-I, advanced, ETB,ETC)
 - Can define any detector with any arm directions, lengths and location
 - Can create a 'network' of detectors
 - Calculates the SNR of a signal (VIR-027A-09):

$$\rho = 1.56 \times 10^{-19} \left(\frac{\mathcal{M}}{M_{\odot}}\right)^{5/6} \left(\frac{Mpc}{r}\right) f_{geo} \sqrt{\int_{f_{low}}^{f_{ISCO}} \frac{f^{-7/3}}{S_h(f)} df}$$

- Calculates the time-of-arrival for any network, location, etc
- Uses a finite grid of sky points

Technical Implementation

- Code still needs to be cross checked! Using self-made code: pyE1
 - Can choose noise curve (LIGC)
 - Can define any detector y location
 - Can create a 'net
 - Calculates the

All results preliminary e-of-arrival for any network, location, etc grid of sky points

1 Sep 2010

figths and

 $\frac{f_{ISCO}}{S_{L}(f)} \frac{f^{-7/3}}{df}$

Detector Network

- Assume LIGO+Virgo online
 - with enhanced advanced configuration
 - $f_{low} = 30 \text{ Hz}$
- Probably advanced detectors running in Japan (J1) (and Australia)
- Different ET geometries: (f_{low} = 3Hz, ET-B noise curve)
 - Δ at Geo-site (L=10 km)
 - L at Geo site and L in Black Forest (L=7.5 km)
 - L at Geo site and L in Hungary (L=7.5 km)

Detector Network

• Assum

Signal parameters

- Masses: 1.4, 10.0, 50.0 M
- Sky location: random location on the sky
- **Source parameters**: random orientation and inclination
- Distance: 100 Mpc

→this gives a list of "observed quantities"

Observed quantities

- Select a detector network with a noise PSD
- Select a signal with parameters (as described before)
- → "Observed quantities": (masses assumed to be known)
 - SNR inclusively the error $\Delta \rho = 1 + 1\% \times \rho$ Intrinsic error Calibration error
 - Time-delays of the signal between the detectors
 - Error on the time delay:
 - Given the SNR and its error: calculate maximum SNR mismatch $q = \frac{\rho \Delta \rho}{\rho + \Delta \rho}$
 - Calculate mismatch by introducing a time-shift:

$$\rho_c(t) = \int_{f_{low}}^{f_{ISCO}} df \, \cos\left(2\pi ft\right) \frac{f^{-7/3}}{S_n(|f|)} \qquad \qquad \rho = \sqrt{\left(\rho_c^2 + \rho_s^2\right)}$$

• Find the time t at which $ho_c(t) \equiv q$

Observed quantities

Sky Location procedure

- Divide the sky in equal-sized areas (SkyPoints)
- For a given signal/network/noise:
 - Reject any SkyPoint inconsistent with the timing of the arrival time of the signal (allowing 2 sigma error)
 - Keep only the remaining points which contain the true location with 90%, as deduced from the SNR values.

60°

60°N

30°N/

00

30°S

30°N,

0°

30°S

Effect on the timing error

Nice WG+ meeting

Using the amplitude

- Assumption: Masses known (i.e. template-bank)
- Unknown: Distance, sky location, source orientation
- Take the SNRs of two detectors: $t = \frac{\rho_1^2 \rho_2^2}{\rho_1^2 + \rho_2^2}$ \rightarrow Quantity independent of distance

• SNR depends on
$$\rho^2 = \frac{\sigma^2}{D_{\text{eff}}^2} = \frac{\sigma^2}{r^2} \left(F_+^2 H_+^2 + F_\times^2 H_\times^2\right)$$

antenna factors:

• Choose fixed sky location (SkyGrid), do some maths:

Using the amplitude

Example: lota segment whole sky

Example: iota segment > 90%

Example: Only Timing

Example: Timing+amplitude

- Overview: What is the goal
- Technical details
 - Detector network
 - Observed quantities
 - Methods used
- Preliminary results
 - Tests with S6 injections
 - Results for different ET configurations
- Outlook

Testing the method: SW injections

- Using MBTA software injections from S6
- All data in a text file
- Using reconstructed masses and end-time
- Correcting end-time to fixed frequency

Example: Only timing

Example: Timing & Amplitude

Summary of 100 trials

Area of LV network + ET

28

Conclusion

- When running (enhanced) advanced LV detectors:
 - Localization capabilities does not improve significantly (0.5-0.9 reduction of area)
 - Area reduction seems best for small masses.
 - Two L-instruments farther away slightly better than one Triangle instrument
 - Rotation of the two L's: insignificant
- Not taken into account:
 - Duty factor with ET as additional detector.
 - Observation time with 3/4 detectors.
 - Rotation of earth

Outlook

- Verify the code and algorithms
 - Compare with **ET-C noise curve** (i.e. Xylophone)
 - Investigate behavior for high mass systems
 - Include rotation of earth (A 10/10 source will be in band for 20 minutes for f=3 Hz).
 - Double check the results with MC methods