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e neutron stars build from single-fluid, normal matter




e neutron stars build from single-fluid, normal matter

¢ strange stars composed of deconfined quarks
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e neutron stars build from single-fluid, normal matter

¢ strange stars composed of deconfined quarks

o superfluid neutron stars

number density (fm_3)

neutron drip



e neutron stars build from single-fluid, normal matter

¢ strange stars composed of deconfined quarks

o superfluid neutron stars

e NS oscillations in Te\VeS
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e neutron stars are the most extreme
laboratories in the universe

» rapid (differential) rotation
» relativistic effects

absoisely stabie
strange quark
matier

»  superfluidity, superconductivity

uid|s

u'
m
’

> strong magnetic fields .
»  solid crust P

M~ 1.4 Ms

» efc...

o while AAvLIGO/VIRGO most likely will detect gravitational waves for the first time,
39 generation detectors like ET are utterly needed for high precision
measurements required by asteroseismology and strong field tests




¢ inclusion of rotational effects in linear theory posed several humerical difficulties in
the past but were finally mastered two years ago

e e can now study all perfect fluid modes in (even ditferentially) rotating neutron
stars up to the Kepler-limit (0-modes, g-modes, r-modes)




e based on rotating sequences for three different E0S, we proposed simple
empirical relationships for the dependence of the F-mode frequency on angular
velocity

e recently, this study has been extended to a wider range of polytropic EoS and to
damping times as well
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e based on rotating sequences for three different E0S, we proposed simple
empirical relationships for the dependence of the F-mode frequency on angular
velocity

e recently, this study has been extended to a wider range of polytropic EoS and to
damping times as well
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e based on rotating sequences for three different E0S, we proposed simple

empirical relationships for the dependence of the F-mode frequency on angular
velocity

e recently, this study has been extended to a wider range of polytropic EoS and to
damping times as well
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e based on rotating sequences for three different E0S, we proposed simple

empirical relationships for the dependence of the F-mode frequency on angular
velocity

e recently, this study has been extended to a wider range of polytropic EoS and to
damping times as well
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e correspondingly, EoS-independent relationships can also be found for the
damping times; the key idea here: instead of using the angular velocity, use
mode frequencies as measure of rotation rate

EoS A

EoS P0.66
EoS P1.0
EoS P1.2
EoS P1.4
3rd order fit

o rotation rate increases from to

¢ Not all EoS become CES-unstable, 1.e.
damping time grows to infinity

e fitting Is done via a third order polynomial
since

» linear fit is already determined by
constraints (independent of actual data)

» quadratic fit doesn‘t match data point
characteristics



e a similar approach can be made for the CES-stable modes; keep in mind to
use mode frequencies In the correct frame...

EoS i

EoS A 5 5

F0SPOS | * again, rotation rate increases from to
0 : 5 :

E0S P1.2 '

EoS P1.4
3rd order fit

e spread of the data points is somewhat larger
than for the (potentially) CFS-unstable
modades

e still, damping times can be fitted very well
(@gain) with a cubic polynomial

® NOW, one can do asteroseismology with rotating stars!!



e example: EoS P1.2 model rotating at 60% of the mass-shedding limit
o three unknowns (M, R, Q, Qx(M,; R)) vs. measurements of (o1, 02, Ti), 1= 1,2

¢ S; is a combined measurement of the triple (o1, 02, Ti), i = 1,2; i.e. two
frequencies and one damping time

¢ accuracy of the fit: ® the Inverse problem:

r ~
_parameter _exact value value from the fit
Ok /27 0.777 0.806
o1/2m 2.248 2.203

~
M R /2t Qg/21

exact 1.58 1542 0.464 0.777
0y /27 1.056 1.038
0.161 0.136
6.925 9.054

using §1 1.09 13.88 0.470 0.792

using S, 1.64 1580 0.470 0.792
A 4

e the estimated values for M, R, 2 can restrict the range of allowed EoS



¢ growth-phase of the F-mode instabllity IS
constrained by other viscous effects but also
oy

¢ high-amplitude oscillations are damped by
» shock-formation

» Wwave-breaking at the surface

» mode coupling to inertial-modes
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e growth-phase of the -mode instability IS

constrained by other viscous effects but also
oy

¢ high-amplitude oscillations are damped by

» shock-formation
» Wwave-breaking at the surface

» mode coupling to inertial-modes

- i =—a MAGS5, *f,

k| 0—0 MAGS5, *f ,

e e instability saturates at an amplitude which is
o MBT0. Y, AL detectable at least from Virgo Cluster
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e detailed study in progress (improved surface
treatment, more accurate mode-coupling, ...)
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e magnetars are neutron stars with huge magnetic fields
and they come (mainly) in two flavours:

» anomalous x-ray-pulsars (high x-ray flux, narrow
range of spin periods)

» soft gamma repeaters (giant flare eruptions, fine-
structured, decaying tail)

o connecting observed frequencies with theoretical
models can tell us

» mass and radius of the star
» magnetic field strength and field topology

» better understanding of the stellar composition




e carlier studies dealt with pure crustal oscillations or used a toy model to study
global oscillations (crust + core) in-a uniform-magnetic field [Sotani et al. (2007),
Glampedakis et al. (2006)]

o recently, these studies were extended to-handle solid crust - fluid core
oscillations with poloidal/toroidal field topology- [Gabler et al. (2010),
Colaiuda&Kokkotas (2010 in prep.)]

¢ the continuous spectrum is still present in
the core

¢ the frequencies in the crust are discrete

¢ the crust transfers its energy rapidly to the
core

e discrete Alfvén-modes at the crust-core
Interface




e carlier studies dealt with pure crustal oscillations or used a toy model to study
global oscillations (crust + core) in-a uniform-magnetic field [Sotani et al. (2007),
Glampedakis et al. (2006)]

o recently, these studies were extended to-handle solid crust - fluid core
oscillations with poloidal/toroidal field topology- [Gabler et al. (2010),
Colaiuda&Kokkotas (2010 in prep.)]

¢ the continuous spectrum is still present in
the core

- = discrete Alfvén modes APR,; B -~ 4 < 10'% Gauss

~= crust

¢ the frequencies in the crust are discrete

¢ the crust transfers its energy rapidly to the
core

| , e discrete Alfvén-modes at the crust-core
16 18 30 39 44 Frequerf:gy(s':)z) interface




e many mode frequencies in the optimal band
of GW detectors

e |deal source for multi-messenger astronomy

CO000 O O ® iS it possible to excite density-perturbations?

2 > Ermode & 10_??Eburst

bt o amplitude of GWs unknown

100Hz 1000Hz

o smaller and more frequently excited flares also carry information

e can one use them to reveal SGR-parameters and detect G\Ws"?



