Asteroseismology with ET

Erich Gaertig & Kostas D. Kokkotas

Theoretical Astrophysics - University of Tübingen

nice, et-wp4 meeting, september 1st-2nd, 2010

Asteroseismology with gravitational waves as a tool to probe the inner structure of NS

neutron stars build from single-fluid, normal matter

12

Andersson, Kokkotas (1996, 1998) Benhar, Berti, Ferrari(1999) Benhar, Ferrari, Gualtieri(2004)

Asteroseismology with gravitational waves as a tool to probe the inner structure of NS

- neutron stars build from single-fluid, normal matter
- strange stars composed of deconfined quarks

Benhar, Ferrari, Gualtieri, Marassi (2007)

Asteroseismology with gravitational waves as a tool to probe the inner structure of NS

- neutron stars build from single-fluid, normal matter
- strange stars composed of deconfined quarks
- superfluid neutron stars

Andersson, Comer (2001) Andersson, Comer, Langlois (2003)

Asteroseismology with gravitational waves as a tool to probe the inner structure of NS and to test GR

- neutron stars build from single-fluid, normal matter
- strange stars composed of deconfined quarks
- superfluid neutron stars
- NS oscillations in TeVeS

Sotani, Kokkotas (2004, 2005)

Asteroseismology with gravitational waves as a tool to probe the inner structure of NS and to test GR

- neutron stars are the most extreme laboratories in the universe
 - rapid (differential) rotation
 - relativistic effects
 - superfluidity, superconductivity
 - strong magnetic fields
 - solid crust
 - ▶ etc...

 while AdvLIGO/VIRGO most likely will detect gravitational waves for the first time, 3rd generation detectors like ET are utterly needed for high precision measurements required by asteroseismology and strong field tests

- inclusion of rotational effects in linear theory posed several numerical difficulties in the past but were finally mastered two years ago
- we can now study all perfect fluid modes in (even differentially) rotating neutron stars up to the Kepler-limit (p-modes, g-modes, r-modes)

- based on rotating sequences for three different EoS, we proposed simple empirical relationships for the dependence of the *f*-mode frequency on angular velocity Gaertig, Kokkotas (2008)
- recently, this study has been extended to a wider range of polytropic EoS and to damping times as well Gaertig, Kokkotas (2010)

- based on rotating sequences for three different EoS, we proposed simple empirical relationships for the dependence of the *f*-mode frequency on angular velocity Gaertig, Kokkotas (2008)
- recently, this study has been extended to a wider range of polytropic EoS and to damping times as well Gaertig, Kokkotas (2010)

- based on rotating sequences for three different EoS, we proposed simple empirical relationships for the dependence of the *f*-mode frequency on angular velocity Gaertig, Kokkotas (2008)
- recently, this study has been extended to a wider range of polytropic EoS and to damping times as well Gaertig, Kokkotas (2010)

- based on rotating sequences for three different EoS, we proposed simple empirical relationships for the dependence of the *f*-mode frequency on angular velocity Gaertig, Kokkotas (2008)
- recently, this study has been extended to a wider range of polytropic EoS and to damping times as well Gaertig, Kokkotas (2010)

 correspondingly, EoS-independent relationships can also be found for the damping times; the key idea here: instead of using the angular velocity, use mode frequencies as measure of rotation rate

- rotation rate increases from right to left
- not all EoS become CFS-unstable, i.e.
 damping time grows to infinity
- fitting is done via a third order polynomial since
- linear fit is already determined by constraints (independent of actual data)
 - quadratic fit doesn't match data point characteristics

 a similar approach can be made for the CFS-stable modes; keep in mind to use mode frequencies in the correct frame...

- again, rotation rate increases from right to left
- spread of the data points is somewhat larger than for the (potentially) CFS-unstable modes
- still, damping times can be fitted very well (again) with a cubic polynomial

now, one can do asteroseismology with rotating stars!!

- example: EoS P1.2 model rotating at 60% of the mass-shedding limit
- three unknowns (M, R, Ω , $\Omega_{K}(M, R)$) vs. measurements of (σ_1 , σ_2 , τ_i), i = 1,2
- S_i is a combined measurement of the triple (σ₁, σ₂, τ_i), i = 1,2; i.e. two frequencies and one damping time

• accuracy of the fit: EoS P1.2

parameter	exact value	value from the fit
$\Omega_K/2\pi$	0.777	0.806
$\sigma_1/2\pi$	2.248	2.203
$\sigma_2/2\pi$	1.056	1.038
$ au_1$	0.161	0.136
$ au_2$	6.925	9.054

• the inverse problem: EoS P1.2

	М	R	$\Omega/2\pi$	$\Omega_K/2\pi$
exact	1.58	15.42	0.464	0.777
using \mathcal{S}_1	1.09	13.88	0.470	0.792
using S_2	1.64	15.80	0.470	0.792

• the estimated values for M, R, Ω can restrict the range of allowed EoS

Nonlinear Saturation and Detectability

- growth-phase of the *f*-mode instability is constrained by other viscous effects but also by nonlinear saturation
- high-amplitude oscillations are damped by
 - shock-formation
 - wave-breaking at the surface
 - mode coupling to inertial-modes

Nonlinear Saturation and Detectability

- growth-phase of the *f*-mode instability is constrained by other viscous effects but also by nonlinear saturation
- high-amplitude oscillations are damped by
 - shock-formation
 - wave-breaking at the surface
 - mode coupling to inertial-modes

- instability saturates at an amplitude which is detectable at least from Virgo Cluster
- detailed study in progress (improved surface treatment, more accurate mode-coupling, ...)

Asteroseismology and Magnetar QPOs I

- magnetars are neutron stars with huge magnetic fields (B > 10¹⁴ G) and they come (mainly) in two flavours:
 - anomalous x-ray pulsars (high x-ray flux, narrow range of spin periods)
 - soft gamma repeaters (giant flare eruptions, finestructured, decaying tail)

- connecting observed frequencies with theoretical models can tell us
 - mass and radius of the star
 - magnetic field strength and field topology
 - better understanding of the stellar composition

Asteroseismology and Magnetar QPOs II

- earlier studies dealt with pure crustal oscillations or used a toy model to study global oscillations (crust + core) in a uniform magnetic field [Sotani et al. (2007), Glampedakis et al. (2006)]
- recently, these studies were extended to handle solid crust fluid core oscillations with poloidal/toroidal field topology [Gabler et al. (2010), Colaiuda&Kokkotas (2010 in prep.)]

- the continuous spectrum is still present in the core
- the frequencies in the crust are discrete
- the crust transfers its energy rapidly to the core
- discrete Alfvén-modes at the crust-core interface

Asteroseismology and Magnetar QPOs II

- earlier studies dealt with pure crustal oscillations or used a toy model to study global oscillations (crust + core) in a uniform magnetic field [Sotani et al. (2007), Glampedakis et al. (2006)]
- recently, these studies were extended to handle solid crust fluid core oscillations with poloidal/toroidal field topology [Gabler et al. (2010), Colaiuda&Kokkotas (2010 in prep.)]

- the continuous spectrum is still present in the core
- the frequencies in the crust are discrete
- the crust transfers its energy rapidly to the core
- discrete Alfvén-modes at the crust-core interface

Magnetars and Gravitational Waves

- many mode frequencies in the optimal band of GW detectors
- ideal source for multi-messenger astronomy
- is it possible to excite density-perturbations?
 - $E_{mode} \approx 10^{-??} E_{burst}$
- amplitude of GWs unknown

- smaller and more frequently excited flares also carry information
- can one use them to reveal SGR-parameters and detect GWs?