

Multimessenger Astronomy with the Einstein Telescope

Martin Hendry

Institute for Gravitational Research and Astronomy & Astrophysics Group SUPA, Dept of Physics and Astronomy, University of Glasgow

Multimessenger Astronomy with the Einstein Telescope

Martin Hendry

Institute for Gravitational Research and Astronomy & Astrophysics Group SUPA, Dept of Physics and Astronomy, University of Glasgow

With thanks to:

Eric-Chassande Mottin, APC, Paris Patrick Sutton, Cardiff University Szabolcs Marka, Columbia University

See also: gr-qc/1004.1964, GRG in press

A multi-messenger approach is very important for GW astronomy, and can:

- increase confidence in GW detections and optimise search strategies
- answer specific questions about emission mechanisms, as well as harness sources as astrophysical probes.

A multi-messenger approach is very important for GW astronomy, and can:

- increase confidence in GW detections and optimise search strategies
- answer specific questions about emission mechanisms, as well as harness sources as astrophysical probes.

Aim of this talk:

Brief preview of multi-messenger science opportunities, in the ET era, assuming "ET-B" spec. (Punturo et al 2010)

Prospects for the Einstein Telescope...

Third Generation Network — Incorporating Low Frequency Detectors

- Third-generation underground facilities are aimed at having excellent sensitivity from ~1 Hz to ~10⁴ Hz.
- This will greatly expand the new frontier of gravitational wave astrophysics.

FP7 European design study, with EU funding, underway for a 3rd-generation gravitational wave facility, the **Einstein Telescope** (ET).

Goal: **100 times** better sensitivity than first generation instruments.

Prospects for the Einstein Telescope...

Third Generation Network — Incorporating Low Frequency Detectors

- Third-generation underground facilities are aimed at having excellent sensitivity from ~1 Hz to ~10⁴ Hz.
- This will greatly expand the new frontier of gravitational wave astrophysics.

FP7 European design study, with EU funding, underway for a 3rd-generation gravitational wave facility, the **Einstein Telescope** (ET).

Goal: **100 times** better sensitivity than first generation instruments.

Mode of interaction: **E-M** observation triggers GW search (see e.g. Abbott et al 2008)

Approach adopted in many searches by ground-based detectors, particularly resulting from gamma-ray and/or x-ray observations.

Example: GRB070201, Not a Binary Merger in M31

Example: GRB070201, Not a Binary Merger in M31

- Inspiral (matched filter search:
 - Binary merger in M31 scenario excluded at >99% level
 - Exclusion of merger at larger distances

Abbott, et al. "Implications for the Origin of GRB 070201 from LIGO Observations", Ap. J., 681:1419–1430 (2008).

- Burst search:
 - Cannot exclude an SGR in M31

SGR in M31 is the current best explanation for this emission

Current multi-messenger approach

Mode of interaction: **E-M** observation triggers GW search (see e.g. Abbott et al 2008)

Approach adopted in many searches by ground-based detectors, particularly resulting from gamma-ray and/or x-ray observations.

E-M trigger mode natural:

- GW detector networks all-sky monitors, low angular resolution
- GW detectors operate at low data rate, O(10⁴ samples/sec).
 → all data archived. (c.f. LOFAR, SKA)
- EM observations highly directional, with FOV of arcminutes or less

Future multi-messenger approach?

Nascent efforts towards GW triggers:

Bloom et al (2009) Kanner et al. (2008)

In the ET era, we can expect GW detections as a routine occurrence

both $E-M \rightarrow GW$ and **GW** \rightarrow **E-M**

Several types of potential source:

- Gamma ray bursts
- Soft gamma repeaters
- Ultra-luminous X-ray sources
- Micro-quasar flares

Wide range of relevant astrophysical questions

Science goals of the gravitational wave field

Astronomy and astrophysics

- How abundant are stellar-mass black holes?
- What is the central engine that powers GRBs?
- Do intermediate mass black holes exist?
- Where and when do massive black holes form and how are they connected to galaxy formation?
- What happens when a massive star collapses?
- Do spinning neutron stars emit gravitational waves?
- What is the distribution of white dwarf and neutron star binaries in the galaxy?
- How massive can a neutron star be?
- What makes a pulsar glitch?
- What causes intense flashes of X- and gammaray radiation in magnetars?
- What is the star formation history of the Universe?

Key requirement:

All-sky high energy burst monitoring satellite operational during the ET era

Current: SWIFT INTEGRAL FERMI MAXI (Japan)

Key requirement:

Planned:

ASTROSAT (India)

SVOM (France/China)

Key requirement:

All-sky high energy burst monitoring satellite operational during the ET era

Drawing board: IXO

The International X-Ray Observatory Mass JAKA COSS

- What happens close to a black hole?
- When and how did super-massive black holes grow?
- How does large scale structure evolve?
- What is the connection between these processes?

Decadal Survey key points

Hydra A Galaxy Cluster

- 20m focal length
- Mass 5900 kg (incl. system margin)
- NASA EELV or ESA Ariane V
- L2 orbit
- 5 year lifetime; 10 year consumables

International X-ray Observatory [XO]

From Lumb & Bookbinder, IXO Mission Overview, Paris, April 2010

Mission History

Similar science goals, but different implementations

Merger of XEUS and Con-X in 2008 Formation of Study Coordination Group (SCG) and advisory groups - co-chairs by 3 agencies: SDT, IWG, TWG

The well recognized science case for a large-

Con-X: NASA concept, number two large

XEUS: ESA with JAXA candidate as large

mission after JWST in 2000 Decadal survey

area X-ray Observatory led to:

Cosmic Vision mission

Await prioritization by Astro2010 Committee & ESA Cosmic Visions L-Class mission down selection

International X-ray Observatory

A Hard X-ray, full-sky, deep imaging Survey and IR/X-ray followup is required for the Black Hole Finder Probe to **EXIST**

& points IRT/XRT/HET to GRBs within ~100s HET: CZT detector arrays + mask: 5-600 keV 4.5m² tiled CZT, coded mask images 90° diam. FoV, 2' resol. & <20" positions; BGO rear shield (0.2-2MeV)

IRT: 1.1m; cooled (-30C) (dichroic: 0.3-0.9μm (HyViSI) and 0.9–2.3 μm (NIRSPEC)

SXI: 0.6m; Italy/ASI contributes upgrade of *Swift/XRT:* Soft X-ray *Imager* (0.1-10keV (CCD))

The New EXIST mission:

- 2y full sky survey: ±20deg Zenith-pointed scanning, 2sr FoV, full-sky ea. 3h.
- 3y followup IDs: IRT/XRT/HET pointings for IDs, redshifts, spectra & timing

P1: EXIST GRBs probe stellar universe to $z \ge 10$

Predicted fractional GRB rates above z vs. z for EXIST vs. Swift/BAT based on Salvaterra (2009). EXIST will detect ~600 GRBs/y and thus ~90/y at Z > 6 and thus ~0.055 x 600 = <u>33 at z >8 per year</u>!

Swift detects ~100 GRBs/y and now ~450 GRBs. It Should detect ~0.04 x 450 = 18 at z > 6 and has now detected 3, suggesting most are missed.

EXIST GRBs vs. z will probe the star formation rate (SFR) vs. z at highest redshifts, and constrain/measure Pop III.

EXIST will probe:

Several types of potential source:

- Gamma ray bursts
- Soft gamma repeaters
- Ultra-luminous X-ray sources
- Micro-quasar flares

Gamma ray bursts: current paradigm

Gamma ray bursts: current paradigm

Following C. Ott

Long Duration GRBs

Progenitor – Wolf-Rayet star $> 25 M_{\odot}$

Rate ~ $0.5 \, {\rm Gpc}^{-3} \, {\rm yr}^{-1}$

Credit: J. McKinney

Details of progenitor model uncertain (see Ott 2009):

- Collapsar type I (no SN explosion; star blown up by GRB)
- MHD Hypernova + Collapsar (explosion before BH)
- MHD Hypernova + Millisecond Magnetar (Corsi & Meszaros 2009)

Long Duration GRBs

Progenitor – Wolf-Rayet star $\,>\,25 M_{\odot}$

Rate ~ $0.5 \, {\rm Gpc}^{-3} \, {\rm yr}^{-1}$

Credit: J. McKinney

Details of progenitor model uncertain (see Ott 2009):

Rapidly rotating stellar core; accretion disk centrifugally supported;
 Non-axisymmetric instabilities → GWs (so far only estimates)

e.g. van Putten et al (2008)

Suspended accretion model

 $E_{\rm GW}\simeq\,0.2 M_\odot~$ at 500 Hz. Observable to ~1Gpc with ET

Sub-class of low-L Long Duration GRBs?

e.g. GRB980425 / SN1998bw, at z = 0.0085

Chapman et al (2007), Liang et al (2007)

Suggestion that local rate up to **1000x** that of the high-L population.

Believed to be associated with particularly energetic core-collapse SN.

Extreme end of a continuum, with the same underlying physical model?...

Several types of potential source:

- Gamma ray bursts
- Soft gamma repeaters
- Ultra-luminous X-ray sources
- Micro-quasar flares

Soft Gamma-ray Repeaters

SGRs = systems emitting brief bursts of soft γ -rays and X-rays at irregular intervals.

Magnetar model:

Credit: M. Weiss

galactic neutron star with $B \sim 10^{15}$ G. Flares occur when solid NS crust cracks, due to B-induced deformations.

May excite non-radial oscillations, producing GWs.

Available energy reservoir: 10⁴⁵ – 10⁴⁷ erg (Corsi & Owen 2009)

31

Soft Gamma-ray Repeaters

What is the minimum GW energy, detectable by ET, for an SGR e.g. at 10kpc, at 0.8kpc (SGR 0501+4516)?

Here there are two clear opportunities for multi-messenger astronomy:

- Optically selected core-collapse supernovae
- Cosmological 'Standard Sirens'

Even 2^{nd} generation detectors only able to detect GWs from galactic SN. Expected galactic SN rate ~ 0.02 / year.

Nearby core-collapse SNe in the LIGO era

SN	Host Galaxy	Date	Туре	Distance
$2008iz^1$	M 82	20090515 [2]	Π	~ 3.5 [3]
2008bk	NGC 7793	20080325 [4]	II-P	$\sim 3.9~[5]$
2005af	NGC 4945	20050208 [6]	II-P	$\sim 3.6~[5]$
2004dj	NGC 2403	20040731 [7]	II-P	$\sim 3.3~[5]$
2004am	M 82	20040305 [8]	II-P	~ 3.5 [3]
2002kg	NGC 2403	20021026 [9]	IIn	\sim 3.3 [5]

¹ Radio supernova, not observed in the optical. Explosion in late January 2008.

Credit: C. Ott

Optically selected core-collapse SNe

Even 2^{nd} generation detectors only able to detect GWs from galactic SN. Expected galactic SN rate ~ 0.02 / year.

SUP

Characteristic strain spectra at 5Mpc (from Ott 2009)

Optically selected core-collapse SNe

ET virtually guaranteed to see at least **0.5 CCSNe / year**, with some power to discriminate between models.

Un-nova = core collapse event that doesn't lead to explosion

Kochanek et al. (2008): Use e.g. **LSST** to monitor ~10⁶ luminous supergiants, looking for stars that disappear in E-M.

Survey depth ~10 Mpc

Un-nova = core collapse event that doesn't lead to explosion

Kochanek et al. (2008): Use e.g. **LSST** to monitor ~10⁶ luminous supergiants, looking for stars that disappear in E-M.

Survey depth ~10 Mpc

ET should "see" GW signature

[Also strong neutrino signature]

Neutrinos

Many targets of ET will also be strong neutrino emitters.

Core collapse SNe: ~0.1s pulse of low-energy v's, up to ~10⁵³ erg.

- $E_{\nu} \lesssim 10 \, {\rm MeV}$ 'Low' energies vessel filled with water, or liquid scintillator.
- Current: e.g. Super-Kamiokande 50 kTon of pure water

LVD, SNO+ 1 kTon of liquid scintillator

Future:ASPERA roadmap includesMegaton detector.

Plans for multi-megaton (e.g. Deep-TITAND)

Neutrinos

Many targets of ET will also be strong neutrino emitters.

 $E_{\nu} \gtrsim 100 \text{ GeV}$. 'High' energies – need much larger volume.

Sources: GRBs, SGRs etc (high energy $\gamma \ \Rightarrow \ \text{high energy} \ \nu$)

Current: e.g. IceCube km³-scale, at South Pole ANTARES 0.01 km³-scale, at 2.5km depth

Future: ASPERA roadmap includes KM3NeT.

Un-nova = core collapse event that doesn't lead to explosion

Kochanek et al. (2008): Use e.g. **LSST** to monitor ~10⁶ luminous supergiants, looking for stars that disappear in E-M.

Survey depth ~10 Mpc

ET should "see" GW signature

Discovery of un-novae \Rightarrow constraints on SF history; implications for binary inspiral masses and event rates. (c.f. Belcynkski et al 2010)

'Standard Sirens': potential high-precision distance indicators.

Nissanke et al (2009)

Major challenge: redshift from E-M counterpart

Sathyaprakash et al. (2009):

~10⁶ NS-NS mergers observed by ET. Assume that E-M counterparts observed for ~1000 sources, 0 < z < 2.

Berger et al. (2007) present optical observations of 9 short-hard GRBs. Obtained spectrosopic redshifts for 4.

8/9 host galaxies, with R-band mag. 23 – 26.5

Also, *no* HST optical host galaxy for GRB080503

By the ET era there should be Extremely Large optical Telescopes operating on the ground.

See e.g. the 42m EELT http://www.eso.org/sci/facilities/eelt/

EELT will be capable of obtaining high quality spectra at $z \sim 6$.

http://www.eso.org/public/teles-instr/e-elt/index.html

⇒ Follow-up spectroscopic observations should be straightforward

BUT Still strong case for a wide-spectrum high-energy monitoring satellite.

e.g. 5 of the 9 SGBs in Berger et al (2007) had only X-ray positions, but these were measured to ~6 arcseconds.

GW triggers from ET network would locate source to ~10 sq. deg.

With *only* optical afterglows, that leaves ~10⁷ galaxies!

BUT Still strong case for a wide-spectrum high-energy monitoring satellite.

e.g. 5 of the 9 SGBs in Berger et al (2007) had only X-ray positions, but these were measured to ~6 arcseconds.

GW triggers from ET network would locate source to ~10 sq. deg.

With *only* optical afterglows, that leaves ~10⁷ galaxies!

CHALLENGE Use 2nd generation NS-NS merger detections to better understand optical (and radio) signatures.

BUT Still strong case for a wide-spectrum high-energy monitoring satellite.

e.g. 5 of the 9 SGBs in Berger et al (2007) had only X-ray positions, but these were measured to ~6 arcseconds.

GW triggers from ET network would locate source to ~10 sq. deg.

With *only* optical afterglows, that leaves ~10⁷ galaxies!

CHALLENGE Use 2nd generation NS-NS merger detections to better understand optical (and radio) signatures.

Could this open up entire NS-NS merger population detected by ET?

Low Energy Photons

e.g. Hansen & Lyutikov (2001)

Discuss prospects for detecting radio *pre-cursor* of short-hard GRBs, due to magnetospheric interactions of a NS-NS binary.

At 400 MHz

$$F_{\nu} \sim 2.1 \text{mJy} \frac{\epsilon}{0.1} \left(\frac{D}{100 \text{Mpc}}\right)^{-2} B_{15}^{2/3} a_7^{-5/2}$$

Already detectable by largest radio telescopes, out to few x 100 Mpc.

Observable with **SKA** to cosmological distances.

Conclusions

Many and varied MMA science opportunities with ET:

- Long GRBs to ~1Gpc; constraints on low-L population
- SGRs: efficiency constraints in magnetar model
- Coincident GWs and neutrinos from GRBs and core-collapse
 SNe, improving understanding of physical mechanisms
- E-M counterparts of SHB 'standard sirens' (possibly extending to full NS-NS merger population?)

All argues for strong collaboration and synchronicity with other messengers – particularly all-sky high-energy burst monitor

Opening a new window on the Universe

Opening a new window on the Universe

Gravitational Waves ????

University of Glasgow