Testing star formation models with Einstein Telescope

Chris Van Den Broeck

2nd ET Annual Workshop, Erice, Italy, October 14-16, 2009

Overview

- Star formation rate (SFR) models and their impact on compact binary coalescence rates
- Coalescence rates predictions from qualitatively different SFR models: Will ET distinguish them?
- Reconstructing coalescence rates with ET
- Simulations and results

Star formation models and compact binary coalescence

Coalescence rate at redshift z, per unit time and unit volume, as observed at z=0:

 $\dot{\rho}_{c}^{0}(z) = \dot{\rho}_{c}^{0}(0) \frac{\dot{\rho}_{*,c}(z)}{\dot{\rho}_{*,c}(0)}$

where $\dot{\rho}_{c}^{0}(0)$ coalescence rate at current epoch (Mpc⁻³ Myr⁻¹)

• Relationship with underlying SFR $\dot{
ho}_*(z)$:

$$\dot{\rho}^{0}_{*,c}(z) = \int \frac{\dot{\rho}_{*}(z_{f})}{(1+z_{f})} P(t_{d}) dt_{d}$$

- with z_f redshift at which progenitor binary formed t_d delay time between formation of progenitor and coalescence $P(t_d)$ probability distribution for delay time
- For $t_d > au_0$ (minimum delay time), $P(t_d) \propto 1/t_d$

Star formation models and compact binary coalescence

- $\dot{\rho}_c^0(z)$ coalescence rate per unit time and per unit (comoving) volume
- The coalescence rate per unit time and per unit redshift is then

$$\frac{dR_c^0}{dz}(z) = \dot{\rho}_c^0(z) \frac{dV_c}{dz}(z)$$

- This depends on:
 - Model for the formation of progenitor binaries $\dot{
 ho}_*(z)$
 - Rate of coalescence at current epoch $\dot{
 ho}_c^0(0)$
 - Minimum delay time τ_0 between formation and coalescence

Different SFR models

Will consider 4 different models [see Regimbau & Hughes, arXiv:0901.2958 for references]:

- Hopkins & Beacom '06: Lower bounds using evolution of stellar mass density, metal mass density, SN rate density; upper bound from Super-Kamiokande results on neutrino flux from core collapse SN
- Nagamine et al. '06: Combining results from (i) direct observations, (ii) a model using local fossil evidence at z ~ 0, (iii) theoretical *ab initio* models
- Fardal et al. '07: New proposal for initial mass function with a view on reconciling SFR predictions with total extragalactic background radiation
- Wilkins et al. '08: Based on stellar mass density measurements, new ansatz for initial mass function

Different SFR models

• Tania's code rate.m (available in WG4 work area): Specify model, minimum delay time τ_0 (e.g., 20 Myr for BNS), local coalescence rate $\dot{\rho}_c^0(0)$ (e.g., 0.03 Mpc⁻³ Myr⁻¹)

Inferring coalescence rates from observed BNS events

- From BNS inspiral signal: measure luminosity distance D
- Assuming a cosmological model, from D₁ calculate z
- Do this for all observed sources \rightarrow list of redshifts z
- Bin events in redshift to get measured coalescence rate dR_/dz
- Affected by
 detection efficiency which needs to be corrected for

Estimating detection efficiency

- Consider large number of software injections
 - arbitrary sky positions
 - arbitrary orientations
 - sprinkled uniformly in co-moving volume
- Impose detection SNR > 8
- Using sufficiently small redshift bins, calculate efficiency ε(z) = (# found in bin)/(# total in bin)
- Use this to correct the directly measured coalescence rate:

$$dR_{rec}/dz = \epsilon(z)^{-1} dR_m/dz$$

Recovered distribution will be affected by uncertainties in measured $D_1 \rightarrow errors$ in redshift binning

- Contributions to uncertainty in D₁:
 - Uncertainty due to ET's noise; can be modeled roughly as $[\Delta D_L/D_L]_{ET} \sim 1/SNR$
 - Uncertainty due to weak lensing, which we model as

 $[\Delta D_{L}/D_{L}]_{WL} = 0.05 \text{ z}$

Total uncertainty:

 $(\Delta D_{L}/D_{L})^{2} = ([\Delta D_{L}/D_{L}]_{ET})^{2} + ([\Delta D_{L}/D_{L}]_{WL})^{2}$

Simulations

- Simulate a "catalog" of coalescence events, distributed
 - Randomly in sky position and orientation, uniform distribution
 - Randomly in (m_1, m_2) , Gaussian $(1.35\pm0.04)M_{sun}$
 - Randomly in redshift, drawn from coalescence rate model dR/dz
- Demand SNR > 8 for detectability
- To each event, assign "measured" distance $D_{L}'(z) = D_{L}^{0}(z) + \delta D_{L}(z)$
 - $D_{L}^{0}(z)$ "true distance"
 - $\delta D_{1}(z)$ drawn from Gaussian, spread ΔD_{1}
- Invert D'(z) to get inferred redshift z'

Simulations (cont'd)

- Perform binning of inferred redshifts z' to get directly measured coalescence rate dR_m/dz
- Recovered coalescence rate: $dR_{rec}/dz = \epsilon(z)^{-1} dR_m/dz$

Do this for many different catalogs

- In each redshift bin:
 - compute mean of recovered rate over all catalogs
 - compute 1- σ spread in recovered rate over all catalogs

Results

• Assume minimum delay time $\tau_0 = 20$ Myr, local coalescence rate $\dot{\rho}_{c}^{0}(0) = 0.03 \text{ Mpc}^{-3} \text{ Myr}^{-1}$ 5^{× 10⁴} Black: Hopkins & Beacom Underlying and recovered dR_c^0/dz Blue: Fardal et al. Red: Wilkins et al. 3 • Green: Nagamine et al. 2 Solid lines: predicted rates **Circles:** recovered rates **Dashed:** 1-sigma spreads 0.5 1.5 2 2.5 3.5 Λ з

z

Effect of free parameters

- Local coalescence rate $\dot{\rho}_c^0(0)$: constrained by 2nd generation detectors
- Effect of minimum delay time?

- Red: Wilkins et al., $\tau_0 = 20$ Myr
- Blue: Fardal et al., $\tau_0 = 100 \text{ Myr}$

Solid lines: predicted rates Circles: recovered rates Dashed: 1-sigma spreads

Summary and future work

General conclusion:

ET can reliably reconstruct coalescence rates up to z ~ 1.5 at the 1% level

 In particular, ET can distinguish between the predicted coalescence rates from four different SFR models in recent literature

Remaining issues:

- Beyond z ~ 1.5: systematic effects in dR_{rec}/dz due to large D_L errors, incorrect z binning; can presumably be corrected for
- Is there a way to (partially) correct for weak lensing?
- Only used "restricted" inspiral waveform
- Given any coalescence rate, how well can underlying SFR model be reconstructed from ET measurements?

