## Continuous wave searches with ET

Badri Krishnan

Max Planck Institut für Gravitationsphysik Albert Einstein Institut Golm, Germany

> ET Meeting, Cardiff March 25, 2009



## Outline

The waveform

Search techniques and current results

Preliminary expectations from ET



#### The waveform

In the rest frame of the neutron star, the signal is a sinusoid with a quadrupole pattern for the amplitude:

$$h_{+}(\tau) = A_{+} \cos \Phi(\tau) \qquad h_{\times}(\tau) = A_{\times} \sin \Phi(\tau)$$
$$A_{+} = h_{0} \frac{1 + \cos^{2} \iota}{2} \qquad A_{\times} = h_{0} \cos \iota$$
$$h_{0} = \frac{16\pi^{2}G}{c^{4}} \frac{I_{zz} \epsilon f_{r}^{2}}{d} \rightarrow \text{Model Dependent}$$

- ι: pulsar orientation w.r.t line of sight
- $\epsilon = (I_{xx} I_{yy})/I_{zz}$ : equatorial ellipticity
- ► *f<sub>r</sub>*: rotation frequency
- d: distance to star



#### The waveform phase

The phase model is taken to be a polynomial corresponding to a reference time  $\tau_0$ :

$$\Phi( au) = \Phi_0 + 2\pi \left[ f( au - au_0) + rac{1}{2} \dot{f}( au - au_0)^2 + \ldots 
ight]$$

Need to correct for the arrival times

For an isolated pulsar:

$$\tau = t + \frac{\mathbf{r}_D \cdot \mathbf{n}}{c} + \text{relativistic corrections}$$

For a pulsar in a binary system:

$$\tau = t + \frac{\mathbf{r}_{D} \cdot \mathbf{n}}{c} + \frac{\mathbf{r}_{P} \cdot \mathbf{n}}{c} + \text{relativistic corrections}$$

- ▶ **n**: sky-position, **r**<sub>D</sub>: Detector in SSB frame, **r**<sub>P</sub>: Pulsar in binary frame
- This simple model might be complicated by glitches and accretion
- We assume the signal to last months or years

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

# Search techniques

Fully coherent matched filter searches

Feasible only for precisely known sources

Semi-coherent searches

- Break up data T<sub>obs</sub> into N smaller segments T<sub>coh</sub> and combine the segments semi-coherently
- This is forced upon us for targeted or blind searches by computational cost constraints – situation probably similar in the ET era
- Different flavors depending on what one does in the coherent and incoherent steps
- In the most general sense, this includes
  - SFT based searches (Powerflux, Hough, Stackslide)
  - Segments are demodulated coherently ("Hierarchical search")
  - Cross-correlation (similar in some ways to a Hierarchical search but simpler to implement)



# Search techniques

- The basic software infrastructure is now well developed at least for isolated neutron stars
- The codes have been implemented on both standard LSC clusters and Einstein@Home
- We can expect large gains from implementations on GPU units
- However, we still do not have a clear demonstration of a pipeline which can follow-up candidates in a multi-stage scheme
- This should happen in the next few years, certainly before AdvLIGO comes online



## Search techniques

To simplify life for this talk, we write the sensitivity of the searches in two cases

Single template search

$$h_0 pprox 11 \sqrt{rac{S_n(f)}{DT_{obs}}}$$

Wide parameter space semi-coherent search

$$h_0 pprox rac{25}{N^{1/4}} \sqrt{rac{S_n(f)}{DT_{coh}}}$$

- The factor of 25 is meant to include both hits due to computational cost and multiple statistical trials
- This is just a useful fudge at the moment, and we will eventually need a more careful analysis for a given source and search technique
- Do not expect to be accurate to better than 50% with these estimates!



3

・ロット (雪) ・ (日) ・ (日)

# Summary of key LIGO results

- LIGO data has been used to do better than other indirect limits on h<sub>0</sub> coming mostly from EM observations
- The Crab spindown limit has been beaten: less than ~ 6% of its spindown energy is going into gravitational waves
- The spindown limit will be challenged for J0537-69 using S5 data, and Vela should be beaten by Virgo
- Indirect limits on objects like Cas A have been beaten but this is a weaker statement than the Crab result
- The Bladford limit on h<sub>0</sub> based on a population of GW pulsars has been beaten by the wide parameter space semi-coherent search – though the more stringent limits by Knispen-Allen are still out of reach



## **Targeted searches**

We will (hopefully!) move onto detection with AdvLIGO or ET

Very interesting astrophysics possible

- > The emission frequency will tell us a lot about the emission mechanism
- The GW amplitude will set constraints on nuclear EOS and NS crusts
- Is the GW signal correlated with glitches and other EM observations?
- Does nature choose to use the Bildsten spin-balance mechanism for accreting netron stars?

▶ ...



# **Targeted searches**

(Adapted from R.Prix, 2006) 10<sup>-23</sup> Vela Statistical Crab 10<sup>-24</sup> IGO-B1951+32 Virgo 10<sup>-25</sup> J0537-69 10<sup>-26</sup> 10<sup>-27</sup> 100 1000 10 GW Frequency [Hz]

- 1 year integration
- 3 detectors for Adv LIGO, single detector for ET and Virgo
- Error bars correspond to 10% uncertainty in distance and  $I_{zz} = [1 3] \times 10^{38} \text{ kg-m}^2$



(日)

# Expected sensitivity for the Crab

Expected improvements for the Crab upper limit:

|                                                      | $h_0^{sens}/h_0^{sd}$           | $(h_0^{sens}/h_0^{sd})^2$                                      | ¢                                                                                                                   |
|------------------------------------------------------|---------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Initial LIGO<br>enhanced LIGO<br>Advanced LIGO<br>ET | 0.07<br>0.03<br>0.004<br>0.0014 | $0.5\% \\ 0.1\% \\ 1.6 \times 10^{-3}\% \\ 2 \times 10^{-4}\%$ | $\begin{array}{c} 1.8 \times 10^{-4} \\ 7.7 \times 10^{-5} \\ 1.0 \times 10^{-6} \\ 3.6 \times 10^{-7} \end{array}$ |

But it would be disappointing if we were still doing upper limits!



## Accreting neutron stars



- 2 year integration, single template
- Assume frequency is known for kHz QPO sources
- Very important to have X-ray timing missions in ET era!



(日)

## Wide parameter space searches



- Scale up current Einstein@Home search to ET sensitivity with single instrument
- Can reasonably expect to beat the spindown limit of unknown neutron stars to a few kpc



(日)

#### Future work

- Need more reliable sensitivity estimates for wide parameter space searches
- Improvements in computational algorithms and infrastructure will be crucial
- Electromagnetic timing, especially X-ray timing of accreting neutron stars will be almost as important
- More exploration of astrophysical implications of this gain in sensitivity is needed
- More generally, the increased sensitivity of ET (and Adv LIGO) is really important for detecting CW signals

