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Overview

*» Some assumptions about ET
» Compact binary coalescence as seenin ET

» Measuring the mass function of neutron stars and
black holes

» Constraining inspiral models for GRBs
» Pointing accuracies
» Cosmology: Using inspirals as standard candles

CARDIFF
UNIVERSITY



Some assumptions about ET

@ Provisional noise curve

@ 3 interferometers in equilateral triangle _ TTET

@ 30 km total tunnel length
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Compact binary inspiral signals as seen in ET
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What can we learn?

Some questions we can hope to address:

» What is the mass distribution of compact objects, and how has this
distribution evolved over cosmological timescales?

 |n particular, what is the mass range for neutron stars?

* What is the lowest mass a black hole can have?
(Is there an intermediate state between neutron stars and black
holes?)

* What is the mechanism behind gamma ray bursts (GRBs)?

» Can we use compact binary inspiral events as standard sirens and
use them to do cosmology?
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What is the mass range of neutron stars?

* |Let one objectin a binary be
a neutron star; how well can
we measure its mass as a
function of the other object's
mass?

Mass measurement better
than a percentoutto z~ 1

Secondary object needs to
be a black hole

Asymmetric binaries: Can
map the mass distribution out
to redshift of several
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Weighing black holes over cosmological distances

» Estimation of mass parameters at a distance of 3 Gpc
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What is the mechanism behind GRBs?

@ Some short, hard GRBs could
be caused by the inspiral of
two neutron stars, or a
neutron star and a black hole

® Beamed gamma ray emission
perpendicular to the inspiral
plane

@ Constrain such models by:
- Measuring the promptness of
gravitational radiation
compared to the gamma
radiation
- Constraining the opening
angles of the beams by

measuring inclination angle?
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Pointing accuracies for ET as part of a network

@ If ET part of a network of at least three detectors, will be able to infer
sky position from differences in times of arrival

@ For ET together with two L-shaped detectors with AdvLIGO or ET noise
curve, typical pointing accuracies of a few square degrees

@ Coalescences involving a neutron star will have EM counterparts:
- Strongly beamed GRB-like signature
- Infrared/optical afterglow

— Possibility of finding the host galaxy

@ |Importance of pointing accuracy:
- Even without EM counterparts, study whether the spatial distribution of binary
coalescences follows distribution of visible matter
- Definitive identification of (some or all) short GRBs as being compact binary
coalescence events
- Use of binary coalescence as “standard sirens”
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Pointing accuracies

@ Example: An ET located in Cascina and two L-shaped ifos with ET PSD
at Livingston and Hanford and a (10,20)M_ _system
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Determining the dark energy equation of state

@ From supernovae studies: Universe appears to be accelerating

@ Possible explanations:
- General relativity inadequate at large length scales
- Cosmological constant
- Dark energy

@ Dark energy:
- New form of matter with positive density, negative pressure
- FRW Universe, model dark energy as perfect fluid:
p=Wp w = w(z) equation of state parameter
- If w = -1 then cosmological constant
- Current constraints from 5 year WMAP and supernovae studies:
-1.11 <w < -0.86
- Following Schutz '86: Use inspiral GW events as “standard sirens”
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Determining the dark energy equation of state

@ Compact binary coalescences as “standard sirens”:
- From the gravitational-wave signal, get luminosity distance D,

- If sky position can be obtained, identify host galaxy and get redshift z

- Relationship D (z) depends sensitively on cosmological parameters
HO, Q,Q,w

o For simplicity, assume H , Q_, Q known
» Estimate uncertainty on D _using Fisher matrix formalism

@ From error propagation formula:
Aw = |9D_/ow|" AD_

where |dD, /ow|" can be estimated from redshift and choices forH , Q , Q , w
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Determining the dark energy equation of state

@ Distance errors a few percent
@ |ndividual errors in w large
@ But: large numbers of sources
@ Assume:

- (1.4,1O)Msun inspirals

- Event rate 1 yr'in 300 Mpc radius
- Each has identifiable host

- w doesn't vary too much within
bins of Az ~ 0.1

- Errors decrease with v n_. where

n_...nhumber of events per bin

even

— Trace evolution of w(z) at the
1% level
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Summary and future work

Using inspiral events:

@ Find out what is the mass distribution of compact objects, and how this
distribution has evolved over cosmological timescales

@ Study the mass range for neutron stars
@ Find out the mechanism behind short gamma ray bursts
@ Use compact binary inspiral events as standard sirens to do cosmology

Future work:
@ What about merger and ringdown?
@ How can we constrain detailed inspiral models for GRBs?

@ What do NS and BH mass distributions tell us about progenitor
channels?

@ More in-depth treatment of compact binary coalescences as standard
sirens? CARDIFF
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