Compact binary coalescence rates and their evolution

Tomasz Bulik University of Warsaw

Rates

The expected coalescence rates are uncertain. Typically we hope to know them with the accuracy of plus minus one order of magnitude, or even worse.

We can say a little more about ratios of the rates than about the rates themselves.

I will specifically talk about the rate density as a function of redshift.

How to get the rates

- Star formation rate history
- Cosmology
- Stellar initial mass function
- Binary evolution:
 - Compact object formation rate
 - Delays between formation and coalescence
- Melatallicity evolution

What we have

- SFR pretty well determined up to z=2
- IMF needed for massive stars, Scalo exponent, but probablyt metallicity dependent, what is the upper mass limit?
- Binary evolution: good models exist but
 - CE evolution
 - NS/BH masses
 - Dependence on metallicity Z
 - Winds, etc..

Star formation history

Star Formation Rate

Delay distribution

- DNS systems:
 - Observations
 - Modelling with population synthesis codes
- Consistent with 1/t
- Tmin around 10 Myr

Population synthesis - DNS

Delay distribution

- BHNS probably similar to DNS with longer delay
- BBH formation rate strongly depends on metallicity:
 - longer delays
 - may be flat, or like 1/t
 - metallicity very important

Scalings

- Star formation rate increases as t or even t²
- Compact object binary formation rate proportional to SFR, small evolution of metallicity up to z~2
- Delays 1/t or flatter in case of BBH

- Current rate density has contributions from all redshifts
- What is the history of the rate density

Rate density

- DNS: Increse with z similar to the SFR evolution
- BHNS: probably similar trend to DNS
- BBH: increase dur to two factors:
 - SFR increase with z
 - Evolution of metallicity Z with z

Summary

Rate density will increase at least like the SFR, up to $z=1\sim2$.

This means about 10 times higher merger rate at these redshifts than locally.

Rate density as a function of redshoft and masses – to be observed

Science goals: formation of compact objects – core collapse calculations, evolution of massive stars