Cosmography @ ET

Investigating the plausibility of measuring cosmological parameters with ET

T.G.F. Li Gravitation Nikhef Amsterdam

Overview

- Cosmology
 - Electromagnetic waves
 - Gravitational waves
- Methods
- Results
- Conclusions
- Further Work

T.G.F. Li Gravitation Nikhef Amsterdam

Cosmology

Exploring the history and dynamics of the universe

- Hubble constant
- Matter density Ω_m
- Spatial curvature Ω_k
- Dark energy Ω_{Λ} , w_0 , w_a

Encapsulated in <u>luminosity distance</u>

 $E(z) \equiv (1+z)^{3(1+w_0+w_a)} e^{-3w_a z/(1+z)}$

$$d_L(z) = (1+z) \begin{cases} |k|^{-1/2} \sin\left[|k|^{1/2} \int_0^z \frac{dz'}{H(z')}\right] & (k>0) \\ \int_0^z \frac{dz'}{H(z')} & (k=0) \\ |k|^{-1/2} \sinh\left[|k|^{1/2} \int_0^z \frac{dz'}{H(z')}\right] & (k<0) \end{cases}$$

 $H(z) = H_0 \left[\Omega_m (1+z)^3 + \Omega_k (1+z)^2 + (1 - \Omega_m - \Omega_k) E(z) \right]^{1/2}$

T.G.F. Li Gravitation Nikhef Amsterdam

EM measurements "Standard Candles"

Copyright © Addison Wesley

e.g SN1A supernovae

- Intrinsic luminosity (L) known to ~10%
- Measure flux density (F)
- Redshift from spectrum

$$d_L = \sqrt{\frac{L}{4\pi F}}$$

T.G.F. Li Gravitation Nikhef Amsterdam

GW Measurements "standard sirens"

• Signal of a binary neutron star inspiral in the form of

 $h(t) = A(t)\cos\left(2\phi_0 - 2\phi(t)\right)$

 Amplitude of GW signal depends on <u>component masses</u> and <u>luminosity distance</u>

$$A(t) = A(t; M, \mu, d_L, \dots) = \frac{G\mu^{3/5}M^{2/5}}{c^2 d_T} \left(\frac{c^3(t_0 - t)}{5G\mu^{3/5}M^{2/5}}\right)^{-1/4} f(\theta, \phi, \psi, \iota)$$

T.G.F. Li Gravitation Nikhef Amsterdam

FOM

GW's determine an <u>absolute</u> luminosity distance

In combination with <u>EM redshift measurements</u>, one can obtain estimates on cosmological

constants

Method

FOM

Results

	Model	$\Omega_m, \Omega_\Lambda, w_0$	Ω_{Λ}, w_0	$w_0,w1$	Ω_m, Ω_k
Ω_m	0.27	$0.27 \pm 0.03 (12.56\%)$	-	-	$0.27 \pm 0.02 (5.83\%)$
Ω_{Λ}	0.73	$0.73 \pm 0.02 (2.96\%)$	$0.73 \pm 0.03 (4.11\%)$		
Ω_k	0.00	-	-		$0.00 \pm 0.05 (-\%)$
w_0	-1.00	$-1.01 \pm 0.14 (13.89\%)$	$-1.01 \pm 0.08 (7.91\%)$	$-1.00 \pm 0.05 (5.41\%)$	
w_1	0.00	-	-	$0.00 \pm 0.32 (-\%)$	

	Model	$\Omega_k, w0$	$\Omega_\Lambda, \Omega_k, w_0$	Ω_k, w_1	$\mid \Omega_k, w_0, w_1$
Ω_m	0.27		-	-	-
Ω_{Λ}	0.73		$0.74 \pm 0.03 (4.61\%)$	-	-
Ω_k	0.00	$0.03 \pm 0.09 (-\%)$	$0.07 \pm 0.12 (-\%)$	$0.00\pm 0.03(-\%)$	$0.11 \pm 0.14 (-\%)$
w_0	-1.00	$-1.05 \pm 0.12 (11.67\%)$	$-1.10 \pm 0.25 (22.51\%)$	-	$-1.18 \pm 0.28 (23.54\%)$
w_1	0.00			$-0.04 \pm 0.2 (-\%)$	$-0.00\pm 0.62(-\%)$

Compared to EM measurements (WMAP, SNIa, BAO)

T.G.F. Li Gravitation Nikhef Amsterdam $\Omega_m = 0.274 \pm 0.015, \ \Omega_\Lambda = 0.726 \pm 0.015, \ -0.018 < \Omega_k < 0.008, \ -1.14 < w_0 < -0.88$

$W_a = 0$ exclusion

FOM

When can we exclude $w_a = 0$?

- Assume all parameters except for w₀ and w_a to be constrained
- Model universes with $w_a = c$
- Vary c over a range of values

- $w_a = 0.29 \sigma$ exclusion
- $w_a = 0.53 \ 2\sigma$ exclusion
- Linear dependence of σ on μ
- Dark Energy Task force $\sigma \sim 0.3$

Conclusion

- Einstein Telescope can provide an accurate, <u>absolute</u> distant measurement
- Measured accuracy of Einstein Telescope are <u>comparable</u> with current electromagnetic measurements.
- However, limited resolving power once <u>spacial</u> <u>curvature</u> is considered

T.G.F. Li Gravitation Nikhef Amsterdam

FOM

Excellent <u>supplement</u> to current understanding of the universe

Further Work

- Trade-of study between ET-B and ET-C
 - Investigating the <u>low frequency</u> dependence of cosmology by the means of the "xylophone" construction
- Further study to dark energy parameters and curvature

T.G.F. Li Gravitation Nikhef Amsterdam

Backup slides

0

Raw Data (Ωm, ΩL, w0)

T.G.F. Li Gravitation Nikhef Amsterdam

Raw Data (ΩL, w0)

T.G.F. Li Gravitation Nikhef Amsterdam

Raw Data (ΩL, Ωk, w0)

T.G.F. Li Gravitation Nikhef Amsterdam

Raw Data (w0, w1)

T.G.F. Li Gravitation Nikhef Amsterdam

Raw Data (Ωk, w1)

T.G.F. Li Gravitation Nikhef Amsterdam

Gravitation Nikhef Amsterdam

References

• "Cosmography with the Einstein Telescope", B.S. Sathyaprakash et al.

T.G.F. Li Gravitation Nikhef Amsterdam

0

Trash

T.G.F. Li Gravitation Nikhef Amsterdam

Motivation

- ET has the potential of acting like GW equivalent of standard candles -> "standard sirens"
 - Provides a new way of doing cosmography
 - Need optical measurements to determine redshift
 - Cosmic distance ladder independent
- However, contribution to cosmography is relatively unknown
 Paper has been/will be published with an initial exploration on this topic [?]
- Presented work is an extension to this paper, giving you a more extensive set of parameters
 - Dark energy
 - Spacial curvature

T.G.F. Li Gravitation Nikhef Amsterdam

GW measurements "standard sirens"

 Amplitude of inspiral signal depends on chirpmass and luminosity distance

$$h(t) = \frac{\nu M^{5/3}}{D_{\text{eff}}} \omega^{2/3} \cos[2\Phi(t - t_0; M, \nu) + \Phi_0]$$
$$D_{\text{eff}} \equiv \frac{D_{\text{eff}}}{\left[F_+^2(1 + \cos^2(\iota))^2 + 4F_\times^2 \cos^2(\iota)\right]^{1/2}},$$

T.G.F. Li Gravitation Nikhef Amsterdam

