

Helge

Low-frequency gravitational-wave detectors comparison

Dual-recycled Fabry-Perot-Michelson interferometer with two long filter cavities

1) Basics:

- L-shaped topology
- 4 heavy arm-cavity mirrors
- 1 beam-splitter mirror
- 1 power-recycling mirror
- 1 signal-recycling mirror
- at least 4 mirrors building up two filter cavities

2) Advantages:

- high experimental experiences with Michelson interferometer topology, linear arm cavities and dual-recycling
- very high sensitivity around the optomechanical and optical resonance frequencies

3) Disadvantages:

- radiation-pressure noise is present, probably limiting the sensitivity at very low frequencies (depending on the level of seismic and gravity gradient noise)
- need heavy test-mass mirrors
- efficient implementation of input-squeezing needs two filter cavities (with low net fractional loss at a specific bandwidth → therefore as long as possible)
- low experimental experiences filter cavities

Helge

Alternative option: LF Sagnac/Speedmeter

Power-recycled zero-area Sagnac interferometer

1) Basics:

- L-shaped topology
- at least 6 arm-cavity mirrors
- 1 beam-splitter mirror
- 1 power-recycling mirror
- 1 folding mirror
- balanced homodyne detection in order to realize radiation-pressure noise cancellation

2) Advantages:

- radiation-pressure noise can be cancelled
- no need for heavy test-masses
- efficient implementation of input-squeezing does not require long filter cavities

3) Disadvantages:

- low experimental experiences with large-scale Sagnac interferometers and with ring cavities
- signal transfer is not flat but decreases linearly with frequency
- need more than one vacuum tube for the arm cavities

Keiko **Einstein Telescope** Each detector (red, green and blue) consists of one Michelson inter-

Counting suspensions...

Configuration	asumptions	Cryogenic + Long	Room-T and normal length
ET-C	Filtercavities = 2mirrors	21	45
ET-C	Filtercavities = 3mirrors	21	54
LF=Sagnac, HF =MI	FC = 2mirrors, AC = 3mirrors	27	42
LF=Sagnac, HF =MI	FC = 3mirrors, AC = 3mirrors	27	45
LF=Sagnac, HF =MI	FC = 2mirrors, AC = 4mirrors	39	42
LF=Sagnac, HF =MI	FC = 3mirrors, AC = 4mirrors	39	45

ET-C = 3 Filter cavities,

LF-Sagnac + HF-Michelson = only 1 filtercavity, LF has no SR, the 3 mirrors/bs involved in the balanced Homodyne detection are considered as suspended from normal suspensions.

What beam-sizes /mirror diameter?

- Mirror size driven by coating noise.
- MI-HF detector = 60cm mirror
 - Silica available in that size
- MI-LF detector
 - Maximal silicon size = 50cm
 - ET-C assumed = 60cm
 - 50cm => 20% mirror TN
 - No significant change in h(t)
 - Can we go even smaller??

Andreas

Minimal mirror sizes

- Please see ET not from Andreas.
- This is a short summary:

setup	mirror diameter	
	[cm]	
LG00, 1064nm	35	
LG33, 1064nm	57	
LG00, 1550nm	42	
LG33, 1550nm	68	

• So in principle, we could go a little bit smaller for the MI-LF detector ... do we want that?

Mirror sizes of filter-cavity

- Relaxed thermal noise requirements.
- So we can go for the smallest beams that are resonable in terms of resonator stability

- HF-filtercavities are 1064nm, LG33 = 57cm
- LF-filtercavities are 1550nm, LG00 = 42cm

Summary of mirror sizes

- ET-C configuration
 - HF detector (silica): 60cm + 1x 57cm (Filtercavity)
 - LF detector (silicon): 50cm + 2x 42cm (Filtercavities)
- For LF = Speedmeter
 - HF detector (silica): 60cm + 1x 57cm (Filtercavity)
 - LF detector (silicon): ??? Depends on arm cavity design (3 or 4mirrors, mirrors under angle?)

How to go from mirror size to required 'space'

- Mirror size + some distance between beam and the baffles + some space for baffles.
- Dummy example: ET-C HF Michelson detector
 - 60cm mirror diameter
 - 10cm (?) distance between mirror and baffles
 - 10cm radius of baffles
 - TOTAL = 1m diameter tube
- Key question: What distance between beam and baffles?
 - Current detectors use very large distance
 - We want to go as small as possible
 - Diffraction, scattering, vacuum (tube conductivity)

- Each tunnel will contain 2 warm HF detector arms and 2 cold LF detector arms.
- Assuming each is 1m in diameter.
- Putting all of them into a single tube would require 2.5m diameter.
- Tunnel of 4.5m diameter
- Might be quite difficult to somehow separate the individual beams?
- What is about redundancy? If one detectors is upgraded the full arm is not available.
- No Filter cavities considered so far.
- No Sagnac-compatible arm cavities considered. They would need more space

- Each tunnel will contain 2 warm HF detector arms and 2 cold LF detector arms.
- Assuming each is 1m in diameter.
- Tunnel of 4.5m diameter
- · Redundancy is given.
- Also beams are easy to separate.
- However, need 4 beam pipes.
- No Filter cavities considered so far.
- No Sagnac-compatible arm cavities considered. They would need more space

