Gravitational waves from the pulsar glitch recovery period

Mark Bennett Anthony van Eysden Andrew Melatos

University of Melbourne

Overview

- □ Different types of signal from a pulsar glitch
- □ Calculate GW signal using simple model of a glitch
- \square Estimate signal-to-noise ratio for ET
- □ Compare the conventional and xylophone configurations for a glitch search
- □ Blind searches for unseen glitches
- \Box Determine properties of interior from observations

Pulsars and glitches

- **□ Rapidly rotating** neutron stars \blacksquare "Lighthouse effect"
- Extremely accurate timing of pulses (up to 1 part in 10^{15})
- □ Occasional timing irregularities: **glitches** \Box 10⁻¹¹ < $\delta Q/Q$ < 10⁻⁴

Anatomy of a glitch

Types of GW signal

Burst Signal (< 40 sec)

Microphysics (inhomogeneous vortex rearrangement)

Continuous Signal (days/weeks)

Macrophysics (nonaxisymmetric circulation during relaxation)

Glitch model

□ Model NS as cylinder with solid crust, fluid interior \blacksquare allows analytic solutions, stratification

- Glitch: step increase in crust *Ω* → *Ω* + *δΩ*
- \Box Interior is spun up to match crust via the process of **Ekman pumping**
- \square Nonaxisymmetric interior spin-up flow \rightarrow GW

Continuous GW signal

Signal at *f** and 2*f**

- □ Continuous source \square long decay time-scale **n** coherent integration increased signal-to-noise
- Contains information about the properties of the pulsar interior

Detectability with ET

$$
\text{Characteristic wave strain}
$$
\n
$$
h_0 = 6 \times 10^{-26} \left(\frac{\delta \Omega / \Omega}{10^{-4}} \right) \left(\frac{f_*}{10^2 \text{ Hz}} \right)^3 \left(\frac{D}{1 \text{ kpc}} \right)^{-1}
$$

 Signal-to-noise ratio for integration over glitch recovery period $f_* = 100 \text{ Hz}$ Δ *δΩ/Ω* = 2×10⁻⁴ distance $= 1 \text{ kpc}$

LIGO (for comparison)

Conventional vs xylophone ET

Detectability Concerns

- *h0* [∝] *f* ³* → more common, low frequency glitches have smaller wave strain
- □ Larger frequency derivative than usual during relaxation period

Blind Search

- \Box Around 300 glitches observed from \sim 100 pulsars (out of the \sim 2000 pulsars known)
- Estimated galactic population of 10^9 neutron stars, closest expected at distance of 8 pc
- \Box Must be nearby, unseen glitches that are detectable (maybe even with LIGO currently?)
- □ Difficult to search for: unknown position, relaxation, and timing of event (however SKA, etc in future…?)

Nuclear properties from GW signal

 Extract properties of bulk nuclear matter in neutron star interior

- **n** compressibility
- **u** viscosity
- **D** buoyancy
- \blacksquare inclination angle

Contours of constant amplitude ratio (blue) and width ratio (red) of Fourier spectrum peaks at *f** and *2f** for plus polarisation.

Terrestrial Experiments

□ Neutron radius measurements for lead (PREx)

 \Box Heavy-ion collisions (RHIC) \blacksquare Viscosity \sim quantum lower bound

Table 1. Experimental and theoretical results for compressibility, viscosity and Brunt-Väisälä frequency.

(1) Sturm et al. (2001), (2) Hartnack et al. (2006), (3) Vretenar et al. (2003), (4) Piekarewicz (2004), (5) Chen et al. (2005),

(6) Li et al. (2008), (7) Adler et al. (2003), (8) Adare et al. (2007), (9) Cutler & Lindblom (1987), (10) Jaikumar et al. (2008), (11) Reisenegger & Goldreich (1992), (12) Lai (1994), (13) Passamonti et al. (2009)

Summary

- □ Continuous gravitation radiation during glitch recovery period
- □ Estimate signal-to-noise ratio for ET \rightarrow large glitches detectable
- □ Many nearby, unseen glitches with strong signals
- □ Learn new information about pulsar interior from future GW observations