Testing Einstein with Einstein Telescope

B.S. Sathyaprakash

BBH Signals as Testbeds for GR

- Gravity gets ultra-strong during a BBH merger compared to any observations in the solar system or in binary pulsars
 - In the solar system: $\varphi/c^2 \sim 10^{-6}$
 - In a binary pulsar it is still very small: $\varphi/c^2 \sim 10^{-4}$
 - Near a black hole $\varphi/c^2 \sim 1$
 - Merging binary black holes are the best systems for strong-field tests of GR
- Dissipative predictions of gravity are not even tested at the IPN level
 - In binary black holes even (v/c)⁷ PN terms might not be adequate for high-SNR (~100) events

Qualitative Tests

- - Are there polarizations other than those predicted by GR
 - \cdot No concrete proposals yet but some work within the LV
 - \cdot No evaluation in the context of ET
- Quasi-normal modes
 - Is the inspiral phase followed by a quasi-normal mode?
 - Are the different quasi-normal modes consistent with each other?
 - Berti, Cardosa, Will: In the context of LISA
- Is the geometry of the merged object that of a Kerr black hole? (Ryan)
 - Many evaluations in the context of LISA none in the case of ET

Quantitative Tests

• Is the phasing of the waveform consistent with General Relativity

- Can we measure the different post-Newtonian terms and to what accuracy?
 - Detailed study in the case of non-spinning BBH on a quasicircular orbit (Mishra et al)
 - Effect of spin is important: Neglecting them could lead to erroneous conclusion that GR is wrong while it is not
- Is the signal from the merger phase consistent with the predictions of numerical relativity simulations?
 - Are the parameters of the system from the inspiral, merger and ringdown phases consistent with one another?

Black hole quasi-normal modes

- Damped sinusoids with characteristic frequencies and decay times
 - In general relativity frequencies *f_{lmn}* and decay times *t_{lmn}* all depend only on the mass *M* and spin *q* of the black hole
- Measuring two or modes unambiguously, would severely constrain general relativity
 - If modes depend on other parameters (e.g., the structure of the central object), then test of the consistency between different mode frequencies and damping times would fail
- ET could observe formation of black holes out to red-shifts of several

Status of tests with QNM

- Studying QNM from NR simulations at various mass ratios: 1:1, 1:2, 1:4,
 1:8, final spins from -0.8 to +0.8
 - It is not too difficult to generate the QNM only part of the merger signal
 - Can carry out a wide exploration of the parameter space
- What is the relative energy in the various ringdown modes?
 - ★ Are there at least two modes containing enough energy so that their damping times and frequencies can be measured with good (i.e. at least 10% accuracy)?
 - 33 seems to contain contain enough energy compared to 22 modes; should be possible to extract the total mass and spin magnitude
 - Measuring the relative amplitudes of the different modes can shed light on the binary progenitor, namely the total mass and its mass ratio
 - Polarization of ringdown modes can measure the spin axis of merged BH

Inspiralling compact binaries and testing general relativity

Adiabatic inspiral phase of a compact binary coalescence is well modelled using post-Newtonian (PN) formalism.

- Determination of coefficients in phasing formula can lead to meaningful tests
 - Detectability of tails [Blanchet & Sathyaprakash, 1994].
 - Measuring the dipolar content of the gravitational wave and test scalar-tensor theories [Will, 1994; Krolak et al, 1995, Damour & Esposito-Farése, 1998].
 - Parametrizing the 1PN coefficient of the phasing formula capturing the compton wavelength of the massive graviton and bounding its value from GW observations [Will, 1998].

The question

Can these tests be generalized, without having to know a priori the parameters of the underlying theory of gravity?

Parametrized test of PN theory

Phasing formula in the restricted waveform approximation

$$\tilde{h}(f) = rac{1}{\sqrt{30} \, \pi^{2/3}} rac{\mathcal{M}^{5/6}}{D_L} f^{-7/6} e^{i\psi(f)},$$

and to 3.5PN order the phase of the Fourier domain waveform is given by

$$\psi(f) = 2\pi ft_c - \phi_c - \frac{\pi}{4} + \sum_{k=0}^{7} (\psi_k + \psi_{kl} \ln f) f^{\frac{k-5}{3}},$$

Log terms in the PN expansion

- Phasing coefficients are functions of component masses of the binary: $\psi_k(m_1, m_2) \& \psi_{kl}(m_1, m_2)$ [Spins negligible]
- Independent determination of 3 or more of the phasing coefficients ⇒ Tests of PN theory[KGA, Iyer, Qusailah & Sathyaprakash, 2006].

(ET)

Basic Idea

- Parametrize the phasing formula in terms of various phasing coefficients where all of them are treated as independent.
- See how well can different parameters be extracted.
- Those which are well estimated, plot them ($\psi_k \& \psi_{kl}$) in the $m_1 - m_2$ plane (similar to binary pulsar tests) with the widths of various curves proportional to $1 - \sigma$ error bars.

Highly correlated parameters \Rightarrow III-conditioned Fisher matrix for a large parameter space.

ET 6 / 13

Alternative Proposal

[KGA, Iyer, Qusailah & Sathyaprakash, 2006b]

- Treat two parameters as basic variables in terms of which one can parametrize all other parameters EXCEPT one which is the *test* parameter.
- This way, dimensionality of the parameter space is considerably reduced.
- Thus, one will have ⁸C₃ tests, not all of them independent.
- The best choice to be used as basic variables are the leading two coefficients at 0PN & 1PN, which are the best determined ones.
- Then one will have 6 tests.

- Used an earlier EGO noise PSD (similar to one of the ET noise PSDs).
- All parameters except ψ₄ determined quite well over a large range of masses.

Results, FWF: 10Hz Cut-off Vs 1Hz Cut-off

Features

- Improvements are significant for masses $> 250 M_{\odot}$.
- ψ_4 makes the best use of lowered seismic cut-off.
- Otherwise nothing very dramatic due to lower seismic cut-off.

(ET)

Power of a PN Test

- Suppose the GR k^{th} PN coefficient is $q_k(m_1, m_2)$ while the true k^{th} PN coefficient is $p_k(m_1, m_2)$
- The "measured value of the k^{th} PN coefficient is, say, p_0
- The curve $q_k(m_1, m_2) = p_0$ in the (m_1, m_2) plane will not pass through the masses determined from the other parameters

Efficacy of the PPN Test

Effect of changing the coefficients ψ_3 and ψ_{51} by 1% on the test.

