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Motivation

d Generalize our previous analysis for non–spinning BH binaries presented in

Sicily

d “Static model”: inspiral phase: “kludge–numerical model”, merger phase:

“EOB model”, ring–down evolution

d Spinning black hole binaries are richer in information than their static

counterparts

d Inspiral evolution of a compact object (CO) onto a spinning IMBH lasts longer

and probes regions much closer to the light ring as compared with a static

IMBH

d CO is subject to stronger relativistic effects at the end of inspiral evolution

d We can store more information in the Fisher Matrix

d Extend statistical analysis to study a 10D parameter space — 4 intrinsic

parameters and 6 extrinsic ones

d Find out whether we can further improve extrinsic parameter determination

using a detector network of 3 ETs
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Gravitational waveform model

d Inspiral evolution for circular equatorial orbits is modelled using the “kludge

waveform model” by Huerta & Gair (PhysRevD.79.084021)

d The basic ingredients are

dφ

dt
≡ Ω =

√
M

p3/2 ± a
√

M

ṗ =
dp

dLz

L̇z

(1)

d The angular momentum flux L̇z is tuned to mimic Teukolsky–based waveforms
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d Overlap between this “numerical kludge” and Teukolsky–based waveforms is

greater than 0.95 over a considerable portion of the parameter space

d This scheme breaks down slightly before the ISCO at a point r̃trans = rtrans/M

d From this point onwards the orbit gradually changes from inspiral to plunge:

“transition regime”, cf. Ori & Thorne (PhysRevD.62.124022)

d Radiation reaction still drives the orbital evolution during the transition regime

d Because the CO moves on a circular orbit with radius very close to r̃trans and

its radiation reaction is weak, the equations of motion are given by
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dφ

dt̃
≡ Ω̃ '

1

r̃
3/2
trans + q

, (3)

dτ̃

dt̃
'

„
dτ̃

dt̃

«
trans

=

q
1− 3/r̃trans + 2q/r̃

3/2
trans

1 + q/r̃
3/2
trans

. (4)

d2R

dτ̃2
= −αR

2 − ηβκτ̃ , (5)

d where the various dimensionless quantities quoted above are given by

dξ

dτ̃
= −κη , and (6)

κ =
32

5
Ω̃

7/3
trans

1 + q/r̃
3/2
transq

1− 3/r̃trans + 2q/r̃
3/2
trans

Ėtrans , (7)

d R ≡ r̃ − r̃trans and ξ ≡ L̃− L̃trans are introduced to Taylor expand Kerr’s

effective potential around r̃trans and study the CO’s location throughout the

transition regime

d The constants α and β are functions of the Kerr effective potential evaluated

at r̃trans, cf. Ori & Thorne (PhysRevD.62.124022)

d At some point the transition regime breaks down, radiation reaction becomes

unimportant and pure plunge takes over with nearly constant orbital energy
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and orbital angular momentum

L̃fin − L̃trans = −(κτ0Tplunge)η
4/5

,

Ẽfin − Ẽtrans = −Ω̃trans(κτ0Tplunge)η
4/5

, (8)

where,

Tplunge = 3.412 , τo = (αβκ)
−1/5

. (9)

We now must replace the transition regime by the exact Kerr’s metric

adiabatic inspiral formulae

d2r̃

dτ̃2
=

6 Ẽfin L̃fin q + L̃2
fin (r̃ − 3) + (q2 − r̃)r̃ − Ẽ2

fin q2(r̃ + 3)

r̃4
, (10)

dφ

dt̃
=

L̃fin (r̃ − 2) + 2 Ẽfin q

Ẽfin (r̃3 + (2 + r̃) q2)− 2 q L̃fin
, (11)

dτ̃

dt̃
=

r̃ (q2 + r̃ (r̃ − 2))

Ẽfin (r̃3 + (2 + r̃) q2)− 2 q L̃fin
. (12)

d Match the transition regime onto the plunge phase at the point r̃plunge where

the transition angular frequency (3) and the plunge angular frequency (11)

smoothly match for these specific values of energy and angular momentum (8).

d Up to now waveform model is well approximated using a flat–space–time wave

emission formula, namely,
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h(t) = −(h+ − ih×) =
∞X

l=2

lX
m=−l

h
lm
−2Ylm(θ, Φ), (13)

d −2Ylm(θ, Φ) are the spin–weight −2 spherical harmonics. We shall consider

only the modes (l, m) = (2,±2)

d The RD waveform we shall build now originates from the distorted Kerr black

hole formed after merger

d It is a superposition of quasinormal modes (l, m, n)

d Each mode has a complex frequency ω: real part is the oscillation frequency,

imaginary part is the inverse of the damping time,

ω = ωlmn − i/τlmn. (14)

d These two quantities are uniquely determined by the mass and angular

momentum of the newly formed Kerr black hole

d Recent numerical studies (Berti & Cardoso, PhysRevD.76.064034) have shown

that the energy released from inspiral to ringdown by maximally spinning BH

binaries whose mass ratios are smaller than 1/10 ranges from 0.6% (antialigned

configuration) – 1.5% (aligned configuration) of M and scales as η2

d Hence, the one–fit function for the final mass of a distorted Kerr BH after

merger derived by Buonanno et. al., (PhysRevD.76.044003) within the

8



framework of the EOB model should still provide a reasonable estimate

(1.6%–1.8% of M) for spinning IMRIs

d The value of the final spin of the distorted Kerr black hole is obtained using

the fit by Rezzolla, et. al., (ApJL, 2008)

af /Mf = qf = q + s4 q
2

η + s5 q η
2

+ t0 q η + 2
√

3 η + t2 η
2

+ t3 η
3
, (15)

a least–squares fit to available data yields,

s4 = −0.129 ± 0.012, s5 = 0.384± 0.261,

t0 = −2.686 ± 0.065, t2 = 3.454± 0.132,

t3 = 2.353± 0.548. (16)

d These fits allow us to compute the quasinormal frequencies (14) that describe

the perturbations of a Kerr black hole during the RD phase

d These perturbations are usually described in terms of spin–weight −2

spheroidal harmonics Slmn = Slm(aωlmn),

d Our ring–down waveform includes the fundamental mode (l = 2, m = 2, n = 0)

and two overtones (n = 1, 2) and their respective “twin” modes with frequency

ω′lmn = −ωl−mn and a different damping τ ′ = τl−mn, i.e., (Berti, et. al.,

PhysRevD.73.064030)
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h(t) =
M

D

X
lmn

n
Almne

−i(ωlmnt+φlmn)
e
−t/τlmn Slm(aωlmn)

+ A′lmne
i(ωlmnt+φ′lmn)

e
−t/τlmn S

∗
lm(aωlmn)

o
. (17)

d D is the distance to the source. Expanding −2S
aωtriad
lm at first order will suffice

for the analysis we shall carry out later on

−2S
aωtriad
lm = −2Ylm + aωtriadS

(1)
lm + (aω)

2
, (18)

S
(1)
lm =

X
l′

c
l′
lm −2Yl′m . (19)

d Recall Slmn = Slm(aωlmn), so ωtriad is determined by the triad (l, m, n)

d The coefficients cl′
lm are computed using the relation

c
l′
lm =

8<: 4
(l′−1)(l′+2)−(l−1)(l+2)

R
d(cos θ)−2Yl′m cos θ−2Ylm . l′ 6= l,

0, l′ = l.

d Use these expressions to match the plus and cross RD polarizations onto their

plunge counterparts
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d This amounts to determine 24 constants, 12 for each polarization

d Use the plunge waveform to compute ten points before and after the RD to

build an interpolation function: this solution is valid all the way to the horizon!

d Match onto the various quasinormal modes by imposing the continuity of the

plunge and ringdown waveforms and all the necessary higher order time

derivatives

d Match the plunge waveform onto the RD one using only the leading tone n = 0

at the time tpeak when the orbital frequency (11) peaks → fix 4 constants, 2

per polarization.

d Use these values as seed to compute the amplitudes and phases of the first

overtone at tpeak + dt

d Finally, use the values of the amplitudes and phases of the leading tone and

first overtone to determine the four remaining constants at tpeak + 2dt.

d The actual orbital and frequency evolution for a 10+500 M� binary system

with q=0.9 along with its respective waveform from inspiral to ringdown looks

as follows
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Fisher Matrix Analysis

Z Consider a detector network of three ETs in triangular configuration

Z We will use the target “ET B” noise curve Sn(f)

Z When computing the FMs for the various interferometers take into account the

rotation of the Earth: initial radius of inspiral and initial phase of inspiral will

be different for every detector

Z Use the appropriate response function for a ground–based interferometer

Z To compute the expectation value of the noise–induced errors we use the

relation D
∆θ

i
∆θ

j
E

= (Γ
−1

)
ij

+O(SNR)
−1

. (20)

Z FM is given by

Γab = 2
X

α

Z T

0
∂aĥα(t)∂bĥα(t)dt , (21)

ĥα(t) ≡
hα(t)p
Sh (f(t))

, f(t) =
1

π

dφ

dt
. (22)

Z IMRI space is a 10D parameter space of signals: 4 intrinsic parameters and 6

intrinsic ones

Z Complete waveforms last from seconds to a few minutes
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Results

P We run MC for 4 different binary systems, namely, (10+500)M�, (1.4+500)

M� with q=0.9 and q=0
P We summarize the results for two of them in the following tables

Parameter

Model log(m) log(M) log(q) log(p0) log(φ0) log(θS) log(φS) log(θK ) log(φK ) log(D)

Mean -1.37 -1.76 -1.45 -1.96 1.20 0.35 0.48 0.84 0.95 -1.19

St. Dev. 0.255 0.211 0.197 0.392 0.692 0.276 0.347 0.677 0.724 0.292

q=0.9 L. Qt. -2.24 -1.90 -1.59 -2.04 0.71 0.18 0.26 0.31 0.38 -1.43

Med. -2.24 -1.76 -1.46 -1.92 0.90 0.36 0.45 0.66 0.79 -1.25

U. Qt. -2.24 -1.62 -1.32 -1.79 1.57 0.53 0.68 1.35 1.48 -0.99

Table 1: Monte Carlo for the Fisher Matrix errors for black hole systems with

m = 10M� and q = 0.9. Figures of the distribution of the logarithm to base ten of

the ratio for each parameter.
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Parameter

Model log(m) log(M) log(p0) log(φ0) log(θS) log(φS) log(θK ) log(φK ) log(D)

Mean -1.68 -2.05 -2.99 0.43 -0.30 -0.17 0.23 0.35 -0.48

St. Dev. 0.191 0.187 0.555 0.837 0.271 0.346 0.749 0.765 0.349

q=0 L. Qt. -2.20 -2.18 -3.02 -0.19 -0.48 -0.41 -0.32 -0.22 -0.75

Med. -2.20 -2.05 -2.83 0.08 -0.30 -0.20 0.01 0.13 -0.57

U. Qt. -2.20 -1.91 -2.67 0.85 -0.11 0.05 0.68 0.77 -0.30

Table 2: Monte Carlo for the Fisher Matrix errors for black hole systems with

m = 10M� and q = 0. Figures of the distribution of the logarithm to base ten of the

ratio for each parameter.

P The SNR distribution for these two systems are the following
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Summary

P We have built a complete waveform model that includes the inspiral,

transition, plunge and ring–down phases for spinning binaries

P We have also run converging MC simulations for four different binary systems

and have presented the statistics for the noise–induced FM errors and SNR

distribution for two cases

P Run MC for an additional spin parameter q = 0.3
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