

SNR estimates and

parameter estimation calculations

ELIU HUERTA, IOA, CAMBRIDGE

JONATHAN GAIR, IOA, CAMBRIDGE

NIKHEF, AMSTERDAM, FEBRUARY 2010

OUTLINE

- * Motivation to study spinning black hole binaries
- * Construction of gravitational waveform model: inspiral, transition, plunge and ring–down
- * Fisher Matrix Analysis for a 3 ET detector network
- * Results
- Conclusions and future work

MOTIVATION

- Generalize our previous analysis for non-spinning BH binaries presented in Sicily
- * "Static model": inspiral phase: "kludge-numerical model", merger phase:
 "EOB model", ring-down evolution
- Spinning black hole binaries are richer in information than their static counterparts
- Inspiral evolution of a compact object (CO) onto a spinning IMBH lasts longer and probes regions much closer to the light ring as compared with a static IMBH
- * CO is subject to stronger relativistic effects at the end of inspiral evolution
- * We can store more information in the Fisher Matrix
- Extend statistical analysis to study a 10D parameter space 4 intrinsic parameters and 6 extrinsic ones
- Find out whether we can further improve extrinsic parameter determination using a detector network of 3 ETs

GRAVITATIONAL WAVEFORM MODEL

- Inspiral evolution for circular equatorial orbits is modelled using the "kludge waveform model" by Huerta & Gair (PhysRevD.79.084021)
- * The basic ingredients are

$$\frac{\mathrm{d}\phi}{\mathrm{d}t} \equiv \Omega = \frac{\sqrt{M}}{p^{3/2} \pm a\sqrt{M}}$$

$$\dot{p} = \frac{\mathrm{d}p}{\mathrm{d}L_z}\dot{L}_z$$
(1)

* The angular momentum flux \dot{L}_z is tuned to mimic Teukolsky–based waveforms

$$\dot{L}_{z} = -\frac{32}{5} \frac{\mu^{2}}{M} \left(\frac{M}{p}\right)^{7/2} \left\{ 1 - \frac{61}{12} q \left(\frac{M}{p}\right)^{3/2} - \frac{1247}{336} \left(\frac{M}{p}\right) + 4\pi \left(\frac{M}{p}\right)^{3/2} - \frac{44711}{9072} \left(\frac{M}{p}\right)^{2} + \frac{33}{16} q^{2} \left(\frac{M}{p}\right)^{2} + high \text{ order Teukolsky fits} \right\}.$$
(2)

- Overlap between this "numerical kludge" and Teukolsky–based waveforms is greater than 0.95 over a considerable portion of the parameter space
- * This scheme breaks down slightly before the ISCO at a point $\tilde{r}_{\text{trans}} = r_{\text{trans}}/M$
- From this point onwards the orbit gradually changes from inspiral to plunge:
 "transition regime", cf. Ori & Thorne (PhysRevD.62.124022)
- * Radiation reaction still drives the orbital evolution during the transition regime
- * Because the CO moves on a circular orbit with radius very close to \tilde{r}_{trans} and its radiation reaction is weak, the equations of motion are given by

$$\frac{d\phi}{d\tilde{t}} \equiv \tilde{\Omega} \simeq \frac{1}{\tilde{r}_{\rm trans}^{3/2} + q} , \qquad (3)$$

$$\frac{d\tilde{\tau}}{d\tilde{t}} \simeq \left(\frac{d\tilde{\tau}}{d\tilde{t}}\right)_{\rm trans} = \frac{\sqrt{1 - 3/\tilde{r}_{\rm trans} + 2q/\tilde{r}_{\rm trans}^{3/2}}}{1 + q/\tilde{r}_{\rm trans}^{3/2}} . \tag{4}$$

$$\frac{d^2 R}{d\tilde{\tau}^2} = -\alpha R^2 - \eta \beta \kappa \tilde{\tau} , \qquad (5)$$

* where the various dimensionless quantities quoted above are given by

$$\frac{d\xi}{d\tilde{\tau}} = -\kappa\eta$$
, and (6)

$$\kappa = \frac{32}{5} \tilde{\Omega}_{\rm trans}^{7/3} \frac{1 + q/\tilde{r}_{\rm trans}^{3/2}}{\sqrt{1 - 3/\tilde{r}_{\rm trans} + 2q/\tilde{r}_{\rm trans}^{3/2}}} \dot{\mathcal{E}}_{\rm trans} , \qquad (7)$$

- * $R \equiv \tilde{r} \tilde{r}_{\text{trans}}$ and $\xi \equiv \tilde{L} \tilde{L}_{\text{trans}}$ are introduced to Taylor expand Kerr's effective potential around \tilde{r}_{trans} and study the CO's location throughout the transition regime
- * The constants α and β are functions of the Kerr effective potential evaluated at \tilde{r}_{trans} , cf. Ori & Thorne (PhysRevD.62.124022)
- * At some point the transition regime breaks down, radiation reaction becomes unimportant and pure plunge takes over with nearly constant orbital energy

and orbital angular momentum

$$\tilde{L}_{\rm fin} - \tilde{L}_{\rm trans} = -(\kappa \tau_0 T_{\rm plunge}) \eta^{4/5} ,$$

$$\tilde{E}_{\rm fin} - \tilde{E}_{\rm trans} = -\tilde{\Omega}_{\rm trans} (\kappa \tau_0 T_{\rm plunge}) \eta^{4/5} ,$$
(8)

where,

$$T_{\rm plunge} = 3.412 , \qquad \tau_o = (\alpha \beta \kappa)^{-1/5} .$$
 (9)

We now must replace the transition regime by the exact Kerr's metric adiabatic inspiral formulae

$$\frac{d^2 \tilde{r}}{d \tilde{\tau}^2} = \frac{6 \,\tilde{E}_{\text{fin}} \,\tilde{L}_{\text{fin}} \,q + \tilde{L}_{\text{fin}}^2 \,(\tilde{r} - 3) + (q^2 - \tilde{r})\tilde{r} - \tilde{E}_{\text{fin}}^2 \,q^2(\tilde{r} + 3)}{\tilde{r}^4}, \quad (10)$$

$$\frac{d\phi}{d\tilde{t}} = \frac{\tilde{L}_{\text{fin}} (\tilde{r} - 2) + 2 \,\tilde{E}_{\text{fin}} \,q}{\tilde{E}_{\text{fin}} (\tilde{r}^3 + (2 + \tilde{r}) \,q^2) - 2 \,q \,\tilde{L}_{\text{fin}}},\tag{11}$$

$$\frac{d\tilde{\tau}}{d\tilde{t}} = \frac{\tilde{r} \left(q^2 + \tilde{r} \left(\tilde{r} - 2\right)\right)}{\tilde{E}_{\text{fin}} \left(\tilde{r}^3 + (2 + \tilde{r}) q^2\right) - 2 q \tilde{L}_{\text{fin}}}.$$
(12)

- * Match the transition regime onto the plunge phase at the point $\tilde{r}_{\text{plunge}}$ where the transition angular frequency (3) and the plunge angular frequency (11) smoothly match for these specific values of energy and angular momentum (8).
- Up to now waveform model is well approximated using a flat-space-time wave emission formula, namely,

$$h(t) = -(h_{+} - ih_{\times}) = \sum_{l=2}^{\infty} \sum_{m=-l}^{l} h^{lm} {}_{-2}Y_{lm}(\theta, \Phi), \qquad (13)$$

- * $_{-2}Y_{lm}(\theta, \Phi)$ are the spin-weight -2 spherical harmonics. We shall consider only the modes $(l, m) = (2, \pm 2)$
- The RD waveform we shall build now originates from the distorted Kerr black hole formed after merger
- * It is a superposition of quasinormal modes (l, m, n)
- * Each mode has a complex frequency ω : real part is the oscillation frequency, imaginary part is the inverse of the damping time,

$$\omega = \omega_{lmn} - i/\tau_{lmn}. \tag{14}$$

- * These two quantities are uniquely determined by the mass and angular momentum of the newly formed Kerr black hole
- * Recent numerical studies (Berti & Cardoso, PhysRevD.76.064034) have shown that the energy released from inspiral to ringdown by maximally spinning BH binaries whose mass ratios are smaller than 1/10 ranges from 0.6% (antialigned configuration) – 1.5% (aligned configuration) of M and scales as η^2
- Hence, the one-fit function for the final mass of a distorted Kerr BH after merger derived by Buonanno et. al., (PhysRevD.76.044003) within the

framework of the EOB model should still provide a reasonable estimate (1.6%-1.8% of M) for spinning IMRIs

The value of the final spin of the distorted Kerr black hole is obtained using the fit by Rezzolla, et. al., (ApJL, 2008)

$$a_f/M_f = q_f = q + s_4 q^2 \eta + s_5 q \eta^2 + t_0 q \eta + 2\sqrt{3} \eta + t_2 \eta^2 + t_3 \eta^3, \quad (15)$$

a least-squares fit to available data yields,

$$s_{4} = -0.129 \pm 0.012, \quad s_{5} = 0.384 \pm 0.261,$$

$$t_{0} = -2.686 \pm 0.065, \quad t_{2} = 3.454 \pm 0.132,$$

$$t_{3} = 2.353 \pm 0.548. \quad (16)$$

- * These fits allow us to compute the quasinormal frequencies (14) that describe the perturbations of a Kerr black hole during the RD phase
- * These perturbations are usually described in terms of spin-weight -2spheroidal harmonics $S_{lmn} = S_{lm}(a\omega_{lmn})$,
- * Our ring-down waveform includes the fundamental mode (l = 2, m = 2, n = 0)and two overtones (n = 1, 2) and their respective "twin" modes with frequency $\omega'_{lmn} = -\omega_{l-mn}$ and a different damping $\tau' = \tau_{l-mn}$, i.e., (Berti, et. al., PhysRevD.73.064030)

$$h(t) = \frac{M}{D} \sum_{lmn} \left\{ \mathcal{A}_{lmn} e^{-i(\omega_{lmn}t + \phi_{lmn})} e^{-t/\tau_{lmn}} S_{lm}(a\omega_{lmn}) + \mathcal{A}'_{lmn} e^{i(\omega_{lmn}t + \phi'_{lmn})} e^{-t/\tau_{lmn}} S^*_{lm}(a\omega_{lmn}) \right\}.$$
(17)

* D is the distance to the source. Expanding ${}_{-2}S^{a\omega_{triad}}_{lm}$ at first order will suffice for the analysis we shall carry out later on

$${}_{-2}S_{lm}^{a\omega_{\text{triad}}} = {}_{-2}Y_{lm} + a\omega_{\text{triad}}S_{lm}^{(1)} + (a\omega)^2, \qquad (18)$$

$$S_{lm}^{(1)} = \sum_{l'} c_{lm}^{l'} - 2Y_{l'm} .$$
(19)

* Recall $S_{lmn} = S_{lm}(a\omega_{lmn})$, so ω_{triad} is determined by the triad (l, m, n)* The coefficients $c_{lm}^{l'}$ are computed using the relation

$$c_{lm}^{l'} = \begin{cases} \frac{4}{(l'-1)(l'+2) - (l-1)(l+2)} \int d(\cos\theta) _{-2}Y_{l'm} \cos\theta _{-2}Y_{lm} \, . & l' \neq l, \\ 0, & l' = l. \end{cases}$$

Use these expressions to match the plus and cross RD polarizations onto their plunge counterparts

- * This amounts to determine 24 constants, 12 for each polarization
- Use the plunge waveform to compute ten points before and after the RD to build an interpolation function: this solution is valid all the way to the horizon!
- Match onto the various quasinormal modes by imposing the continuity of the plunge and ringdown waveforms and all the necessary higher order time derivatives
- * Match the plunge waveform onto the RD one using only the leading tone n = 0at the time t_{peak} when the orbital frequency (11) peaks \rightarrow fix 4 constants, 2 per polarization.
- * Use these values as seed to compute the amplitudes and phases of the first overtone at $t_{\text{peak}} + dt$
- * Finally, use the values of the amplitudes and phases of the leading tone and first overtone to determine the four remaining constants at $t_{\text{peak}} + 2dt$.
- * The actual orbital and frequency evolution for a $10+500 M_{\odot}$ binary system with q=0.9 along with its respective waveform from inspiral to ringdown looks as follows

FISHER MATRIX ANALYSIS

- * Consider a detector network of three ETs in triangular configuration
- We will use the target "ET B" noise curve $S_n(f)$
- When computing the FMs for the various interferometers take into account the rotation of the Earth: initial radius of inspiral and initial phase of inspiral will be different for every detector
- * Use the appropriate response function for a ground–based interferometer
- * To compute the expectation value of the noise-induced errors we use the relation

$$\left\langle \Delta \theta^i \Delta \theta^j \right\rangle = (\Gamma^{-1})^{ij} + \mathcal{O}(\text{SNR})^{-1}.$$
 (20)

✤ FM is given by

$$\Gamma_{ab} = 2\sum_{\alpha} \int_0^T \partial_a \hat{h}_{\alpha}(t) \partial_b \hat{h}_{\alpha}(t) dt , \qquad (21)$$

$$\hat{h}_{\alpha}(t) \equiv \frac{h_{\alpha}(t)}{\sqrt{S_h(f(t))}}, \qquad f(t) = \frac{1}{\pi} \frac{\mathrm{d}\phi}{\mathrm{d}t}.$$
(22)

- # IMRI space is a 10D parameter space of signals: 4 intrinsic parameters and 6 intrinsic ones
- * Complete waveforms last from seconds to a few minutes

RESULTS

- ☆ We run MC for 4 different binary systems, namely, $(10+500)M_{\odot}$, $(1.4+500)M_{\odot}$, M_{\odot} with q=0.9 and q=0
- \Rightarrow We summarize the results for two of them in the following tables

		Parameter									
Model		$\log(m)$	$\log(M)$	$\log(q)$	$\log(p_0)$	$\log(\phi_0)$	$\log(\theta_S)$	$\log(\phi_S)$	$\log(\theta_K)$	$\log(\phi_K)$	$\log(D)$
q=0.9	Mean	-1.37	-1.76	-1.45	-1.96	1.20	0.35	0.48	0.84	0.95	-1.19
	St. Dev.	0.255	0.211	0.197	0.392	0.692	0.276	0.347	0.677	0.724	0.292
	L. Qt.	-2.24	-1.90	-1.59	-2.04	0.71	0.18	0.26	0.31	0.38	-1.43
	Med.	-2.24	-1.76	-1.46	-1.92	0.90	0.36	0.45	0.66	0.79	-1.25
	U. Qt.	-2.24	-1.62	-1.32	-1.79	1.57	0.53	0.68	1.35	1.48	-0.99

Table 1: Monte Carlo for the Fisher Matrix errors for black hole systems with $m = 10M_{\odot}$ and q = 0.9. Figures of the distribution of the logarithm to base ten of the ratio for each parameter.

		Parameter								
Model		$\log(m)$	$\log(M)$	$\log(p_0)$	$\log(\phi_0)$	$\log(\theta_S)$	$\log(\phi_S)$	$\log(\theta_K)$	$\log(\phi_K)$	$\log(D)$
q=0	Mean	-1.68	-2.05	-2.99	0.43	-0.30	-0.17	0.23	0.35	-0.48
	St. Dev.	0.191	0.187	0.555	0.837	0.271	0.346	0.749	0.765	0.349
	L. Qt.	-2.20	-2.18	-3.02	-0.19	-0.48	-0.41	-0.32	-0.22	-0.75
	Med.	-2.20	-2.05	-2.83	0.08	-0.30	-0.20	0.01	0.13	-0.57
	U. Qt.	-2.20	-1.91	-2.67	0.85	-0.11	0.05	0.68	0.77	-0.30

Table 2: Monte Carlo for the Fisher Matrix errors for black hole systems with $m = 10M_{\odot}$ and q = 0. Figures of the distribution of the logarithm to base ten of the ratio for each parameter.

 \Rightarrow The SNR distribution for these two systems are the following

SUMMARY

- ☆ We have built a complete waveform model that includes the inspiral, transition, plunge and ring-down phases for spinning binaries
- ☆ We have also run converging MC simulations for four different binary systems and have presented the statistics for the noise—induced FM errors and SNR distribution for two cases
- \Rightarrow Run MC for an additional spin parameter q = 0.3