

Topology comparison for ET using an adapted GWINC simulation

S. Chelkowski, H. Müller-Ebhardt, S. Hild

21/09/2009

UNIVERSITY^{OF} BIRMINGHAM

ET note on QND review

Review of quantum non-demolition schemes for the Einstein Telescope

ET-010-09

Helge Müller-Ebhardt, Henning Rehbein, Stefan Hild, Andreas Freise, Yanbei Chen, Roman Schnabel, Karsten Danzmann and Harald Lück

Issue: 1

Date: April 24, 2009

Sagnac Topology seems to give the best quantum noise performance

UNIVERSITY^{OF} BIRMINGHAM

More realistic comparison of Sagnac and RSE topology

UNIVERSITY^{of} BIRMINGHAM

Noise coupling – Sagnac compared to RSE

- Quantum noise characteristic change
- Various displacement noises couple more due to four mirror cavities, e.g. TN, Seismic noise, etc...
- Beam geometry changes and influences TN and seismic noise further
- Higher losses in four mirror arm cavity
- Etc...

UNIVERSITY^{OF} BIRMINGHAM

Current model status

- Single detector
 - L = 10km
- Underground
 - Seismic noise reduced
 - Gravity gradient noise reduced
- Adapted thermal noises & suspension model
- Optimisation parameters
 - Input laser power P
 - SR, ITM & PRM transmissivity
 - Tuning of SRM
 - Readout quadrature with homodyne detector

UNIVERSITY^{of} BIRMINGHAM

Things to keep in mind

- This is a topology analysis and there is no intension to create a new baseline sensitivity curve
 - Following sensitivities are lower than the ones presented on the webpage
 - No magical factor used e.g. For the grav. gradient noise
 - No squeezing used
 - No cryogenic techniques
- Nevertheless the following comparison is valid
- The model can be changed later and a higher performing configuration can be found via optimisation

UNIVERSITYOF BIRMINGHAM

Preliminary results – BHBH optimisation **RSE** – tuned SR SAGNAC

ET01-RSE Noise curve: P = 500.0 W; NSNS: 822Mpc BHBH:7573Mpc

UNIVERSITYOF BIRMINGHAM

Preliminary results – NSNS optimisation **RSE** – tuned SR SAGNAC

ET01-RSE Noise curve: P = 500.0 W; NSNS: 822Mpc BHBH:7573Mpc

To Do

- Finish coding the automatic optimisation procedure to speed up analysis
- Implement influence of beam geometry changes
 - Affects thermal noise
- Perform optimisation for RSE topology to find optimised configuration
- Etc...