Interferometry with Laguerre-Gauss Modes

Paul Fulda University of Birmingham

E.T. WP3 Meeting - Paris - 09/06/2009

Overview

- The three beams that were compared
- Thermal noise reduction using Laguerre-Gauss (LG) modes
- Longitudinal error signals using Pound-Drever-Hall method
- Tilt to longitudinal phase coupling of a FP cavity
- Alignment analysis of an arm cavity
- Differential arm cavity misalignment coupling to output
- The next step: experimental verification of results

Prospects of higher-order Laguerre Gauss modes in future gravitational wave detectors

Simon Chelkowski,
1 Stefan Hild,
1 and Andreas $\ensuremath{\mathrm{Freise}}^1$

¹School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK (Dated: June 8, 2009)

The application of higher-order Laguerre Gauss (LG) modes in large-scale gravitational wave detectors has recently been proposed. In comparison to the fundamental mode, some higher-order

LG00small: The 'reference' configuration
Rc=1910m, w=35.2mm, w0=16.3mm

The three beams that were compared

LG₃₃ : LG₃₃ with same parameters as LG_{00small} Rc=1910m, w=35.2mm, w₀=16.3mm

LG_{00large}: LG₀₀ mode on same mirror as LG₃₃ Rc=1536.7m, w=57.7mm, w₀=8.9mm

Thermal noise benefits of LG modes

Can reduce coating and substrate thermal noiseSee Franc's talk for more on this!

UNIVERSITY^{of} BIRMINGHAM

Advanced Virgo Improvement

	LG00	LG33
SR detuning [Hz]	300	300
Beam size [cm]	6	~ 4
NS/NS inspiral range [Mpc]	145	191

Longitudinal error signals using Pound-Drever-Hall method

Tuning [deg]

UNIVERSITYOF BIRMINGHAM

Tilt to longitudinal phase coupling of a Fabry-Perot cavity

∆**¢≈0.4**°

∆¢≈5.0°

- LG33 outperforms LG00large in this area
- LG33 performance is similar to LG00small
- Beam parameters are the dominant factor

Misalignment: intra-cavity power loss

LG33 outperforms LG00large again

Alignment analysis of an arm cavity

ARDUA ALTA

Differential arm cavity misalignment coupling to output port power

The next step: experimental verification

- Both configurations require lab demonstration
- Experience with LG mode interferometry will be crucial in order to reap the thermal noise benefits

...The end

Constraint: clipping loss

Mode scaling factors	LGoo	LG33	LG55
Mirror size	1	1.64	1.92
Beam size	1	0.61	0.52

Expected thermal noise improvements

Reduction factors of thermal noise	LG00	LG33	LG55	Mesa
Coating thermal noise	1	~ 1.9	~ 2.1	~ 1.5
Substrate thermal noise	1	~ 2.1	~ 2.5	~ 1.8
Thermoelastic noise	1	~ 0.6	~ 0.4	~ 1.8

Reference:personal communication J.-Y. Vinet

Advanced Virgo: inspiral range improvements

Comparison of length and alignment signals

It is important to compute also the beam jitter noise or coupling of alignment fluctuation into phase noise. Our first step: take a simple cavity, a simple Michelson to look for trouble.

Comparison of length and alignment signals

Summary

- Alternative beam shapes are an interesting (and in comparison rather simple) method for reducing thermal effects (thermal noise, thermal lensing)
- Thermal noise can be reduced by factors >2 (linear spectral density)
- Generation of such beams seem to be feasible (information from other fields, to be verified)
- LG modes are compatible with current optical designs, it is easy to make a design for upgrading advanced detectors
- LG modes also seem to be compatible with other future technologies (QND, cooling, ...)

Thermal noise in mirrors

Levin Phys. Rev. D 57 659 (1998)

the strain energy stored in the test mass by a press normalized to 1 N, and having the same distribution as the light intensity in the readout beam

simplicity this and the following considers only Brownian substrate noise for trates of infinite size. A lot of effort has gone into computing accurate numbre ne coating noises, thermo-optic noise, both infinite and finite size mirrors. od review of this topic will be published soon:

thermal issues in advanced Gravitational Wave Interferometric detection of the state of the stat

Readiness

- Thermal effect
 - Thermal noise calculations
 - Thermal lensing calculations
- Generation of LG modes
 - Conversion methods
 - Efficiency, mode purity
 - Noise performance of LG converter
- Interferometery with LG modes
 - Simulation of sensing and control
 - Table-top, prototype verification
- Implementation into GW detectors
 - Core optics design

OK OK in progress to be done OK

OK

in progress

OK

Optimised beams in AdLigo

Thermal noise of Flat beams

LGnm modes:

Bondu et al. Physics Letters A 246 (1998) 227

 $S_x(f) = \frac{4 k_B T}{\pi f} \frac{1}{Q} \frac{1 - \sigma^2}{2 \sqrt{\pi} Y w}$

$S_x(f) = \frac{4 k_B T}{\pi f} \frac{1}{Q} \frac{1 - \sigma^2}{2\sqrt{\pi} Y w} \alpha_n^m$

S(f) =	$4 k_B T$	1	$8 \left(1-\sigma^2\right)$
$D_x(f) =$	πf	\overline{Q}	$3 \pi^2 Y b$

Reduction factors given in this talk are collected from various papers and refer to different examples (mirror size, clipping loss, coating parameters,...). Equations to re-compute these factors properly can be found in (again):

`On thermal issues in advanced Gravitational Wave Interferometric detectors' J. Y. Vinet, *Living Reviews in Relativity*, to be published

Helical LG modes versus triangular cavities

Helical LG modes Continuous ring structure Helical phase distribution

Two possible solutions for this problem:

- a) Do not use triangular cavities (e.g. use bow-tie configurations)
- b) Use sinusoidal LG modes (with slightly worse thermal noise reduction factors)

Why LG modes rather than flat top beams?

- Spherical phase fronts
- Compatible with current interferometers

- Beam shape and phase fronts change on propagation
- Mirror surfaces are more complex
- LG: LG modes are compatible with all current optics
- LG?: cavities resonant to higher order modes are resonant for several modes (of the same order)

By M. Laval and J.-Y. Vinet

Upgrade Advanced Virgo (or other future detectors) to use an LG33 mode

What we need to change:

- Add LG00 to LG33 converter on the laser table
- Change 3-mirror IMC to 4-mirror IMC
- Exchange core optics with mirrors of same size but different ROC
- Retune or replace mode matching optics What we don't need to change:
- Input/output optics (EOMs, isolators, ...)
- Interferometer control systems (ISC/ASC)
- Vacuum system, suspension system, photodiodes, cameras, baffles, ...

Laguerre-Gauss modes

