

INFN Isituto Nazionale d Fisica Nucleare

Suspension noise modeling

P. Puppo INFN Roma, Italy paola.puppo@roma1.infn.it

Outline of the topics in the document

- The last stage suspension of the ET interferometer;
- The model for the thermal noise;
- •Parameters for the LSS in ET;
- •Numerical evaluations and comparison with the ET goal curve.

The mirror last stage suspension

♦ The role of the Last Stage Suspension is to compensate the residual seismic noise and to steer the optical components maintaining the relative position of the interferometer mirrors.

Components and roles:

- •Marionette: Mirror control with actuators (coil-magnets, electrostatic) between the upper suspension stage and marionette;
- •Reaction Mass (RM): Mirror steering with (coil-magnets, electrostatic) actuator between RM and mirror; Mirror protection;
- •Mirror: monolithic silicon suspension.

Requirements:

♦Materials:

◇UHV compatible;
◇Amagnetic;
◇No electrostatic charges;
◇Internal Frequencies above the antenna bandwidth;
◇Low frequencies of the system below control bandwidth;

Compatibility with SuperAttenuator and lower part of the tower:

♦Weights♦Shape

WG2-ET General – Erice – October 15th 2009

22/07/2010

The ET mirror last stage suspension (Cryogenic)

Mirror and its suspension wires:

- wires and mirror materials compatible with good mechanical and thermal properties;
 - High thermal conductivities materials;
 - Low mechanical and optical losses;

<u>a promising material both as mirror substrate and wire is silicon having</u>

high thermal conductivity
very low thermal expansion (zero below 17K)

WG2-ET General –Erice –October 15th 2009

Mechanical Issues

Big Masses:

 \blacksquare reduces the recoils (good for suspension thermal noise)

☑ increases the violin modes (good for control)

BUT

X reduces the vertical modes (not good for control)

Xlook at the overall weight!!

Wires Length Increment

 \blacksquare reduces the pendulum frequencies (good for suspension thermal noise)

BUT

X reduces the violin modes (not good for control)

× reduces the vertical modes (not good for control)

Wires Diameter Increment:

☑ increment of the wire sections (good for cooling)

BUT

X reduces the violin mode frequencies (not good for control)

Xreduces the dilution factor (not good for suspension thermal noise)

•The suspension thermal noise affects the sensitivity in the frequency range below 10 Hz;

• Importance of the different temperatures of the pendulum stages in the computation of the thermal noise

- The marionette stage thermal effect is very important
- The thermal noise of violin modes is negligible (but look at the frequencies)

THE SUSPENSION THERMAL NOISE

- In presence of low dissipative mirror suspensions, a new thermal noise estimation must be done by including the viscous and internal dissipations of the marionette and recoil mass pendulum.
- The marionetta's mechanical pendulum losses give a non negligible effect via its recoil, in the offresonance high-freq. range [*].
- For cryogenic LSS the different temperatures of the pendulum stages is important in the computation of the thermal noise [**]

[*] VIR-015C-09, F. Piergiovanni, M. Punturo and P. Puppo, The thermal noise of the Virgo+ and Virgo Advanced Last Stage Suspension (The PPP effect). [**] P. Puppo, Amaldi 8, New York, June 2009 and MG12, Paris, July 2009, proceedings

Suspension TN Modeling

Equivalent to a branched

combination of three harmonic

horizontal and vertical degrees of

 \mathbf{X}_2

X 3

M2

M3

 \mathcal{K}_{2}

JJJ

K₃

oscillators [*]. This is true for

A Virgo-like last stage suspension is a cascade of three pendula. To the first pendulum (the marionette) the mirror and the recoil mass are hung as branches.

[*] Bernardini A., Majorana E., Puppo P., Rapagnani P., Ricci F., Testi G. "Suspension last stages for the mirrors of the Virgo interferometric gravitational wave antenna." *Rev. Sci. Instr.* 70, no. 8 (1999): 3463.

[**] P. Puppo, Amaldi 8, New York, June 2009 and MG12, Paris , July 2009, proceedings

Parameters for the mirror

• Several different mechanisms contribute to the thermal noise of the mirror:

- Brownian (BR)(substrate, coating) (Τ,φ)
- Thermoelastic (TE) (substrate) (Thermal props)
- Thermorefractive (TR) dn/dT (substrate)
- Thermo-optic new correlated model (TR-TE) (coating)

• The coating brownian noise dominates over the other thermal sources

	<u>Issues *</u>
Mirror Size:	Thickness 30 cm, diam: 45 cm
Beam Size:	w=9.00 cm
Substrate: Mass:	Silicon (Ø _s = 10 ⁻⁹ , good temp. props) 110 kg
Coating: Working Temperature:	Ti:Ta2O5 / SiO2 T=10K (coating losses reduced)

see Erice's meeting talk of J. Franc and R. Nawrodt talk or ET-021-09.

Thermal Issues - (High power stored, curve B)

With liquid Helium

$$P_{HeII}(T_{mario}) = P_{abs} = 3 \ W \Rightarrow T_{mario} = 2K$$

$$P_{abs} = 4 \frac{\Sigma_w}{L} K_{mean}(T_{mario} - T_{mirror})$$

$$K_{mean} = \frac{1}{\Delta T} \int_{T_{mirror}}^{T_{mirror}} K_{si}(T) \ dT \cong 938 \ \frac{W}{m \cdot K}$$

$$\Rightarrow T_{mirror} = 10 \ K$$

$$d_w = 8 \ mm$$

With PT cooler

$$P_{cooler}(T_{mario}) = P_{abs} = 3 \ W \Rightarrow T_{mario} = 5K$$

$$P_{abs} = 4 \frac{\Sigma_{w}}{L} K_{mean}(T_{mario} - T_{mirror})$$

$$K_{mean} = \frac{1}{\Delta T} \int_{T_{mario}}^{T_{mirror}} K_{si}(T) \ dT \cong 1383 \ \frac{W}{m \cdot K}$$

$$\Rightarrow T_{mirror} = 10 \ K$$

$$d_{w} = 8.3 \ mm$$

• To reach a temperature of 10K with a power of 3W on the mirror we need a silicon suspension wire with a diameter of 8 mm;

• The temperature of the marionette stage can be 5 K or 2K depending on which kind of refrigeration system is used

Parameters for the LSS – High Power Curve B

Modes:	pendulum	0.28 Hz, 0.36 Hz, 0.50Hz
	vertical	0.4 Hz (blades), 23 Hz, 62 Hz
	violins	15.8 Hz, 31.6 Hz, 63.2 Hz, 126.4 Hz,

Thermal Noise Curve compared with the Sensitivity Curve B

WP2 Meeting - Glasgow - July 22nd, 2010

Thermal Noise Curve with violins

Thermal Noise for ET

Suspension thermal noise in the xylophone case (LF-Curve C).

Modes:	pendulum	0.28 Hz, 0.36 Hz, 0.50Hz
	vertical	0.4 Hz (blades), 20 Hz, 26 Hz
	violins	33 Hz, 67 Hz, 100 Hz, 200 Hz,

Thermal Noise Curve compared with the Sensitivity Curve C

Thermal Noise for ET